Package: sva 3.55.0

Jeffrey T. Leek

sva: Surrogate Variable Analysis

The sva package contains functions for removing batch effects and other unwanted variation in high-throughput experiment. Specifically, the sva package contains functions for the identifying and building surrogate variables for high-dimensional data sets. Surrogate variables are covariates constructed directly from high-dimensional data (like gene expression/RNA sequencing/methylation/brain imaging data) that can be used in subsequent analyses to adjust for unknown, unmodeled, or latent sources of noise. The sva package can be used to remove artifacts in three ways: (1) identifying and estimating surrogate variables for unknown sources of variation in high-throughput experiments (Leek and Storey 2007 PLoS Genetics,2008 PNAS), (2) directly removing known batch effects using ComBat (Johnson et al. 2007 Biostatistics) and (3) removing batch effects with known control probes (Leek 2014 biorXiv). Removing batch effects and using surrogate variables in differential expression analysis have been shown to reduce dependence, stabilize error rate estimates, and improve reproducibility, see (Leek and Storey 2007 PLoS Genetics, 2008 PNAS or Leek et al. 2011 Nat. Reviews Genetics).

Authors:Jeffrey T. Leek <[email protected]>, W. Evan Johnson <[email protected]>, Hilary S. Parker <[email protected]>, Elana J. Fertig <[email protected]>, Andrew E. Jaffe <[email protected]>, Yuqing Zhang <[email protected]>, John D. Storey <[email protected]>, Leonardo Collado Torres <[email protected]>

sva_3.55.0.tar.gz
sva_3.55.0.zip(r-4.5)sva_3.55.0.zip(r-4.4)sva_3.55.0.zip(r-4.3)
sva_3.55.0.tgz(r-4.4-x86_64)sva_3.55.0.tgz(r-4.4-arm64)sva_3.55.0.tgz(r-4.3-x86_64)sva_3.55.0.tgz(r-4.3-arm64)
sva_3.55.0.tar.gz(r-4.5-noble)sva_3.55.0.tar.gz(r-4.4-noble)
sva_3.55.0.tgz(r-4.4-emscripten)sva_3.55.0.tgz(r-4.3-emscripten)
sva.pdf |sva.html
sva/json (API)

# Install 'sva' in R:
install.packages('sva', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On BioConductor:sva-3.55.0(bioc 3.21)sva-3.54.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologymicroarraystatisticalmethodpreprocessingmultiplecomparisonsequencingrnaseqbatcheffectnormalization

10.06 score 51 packages 3.2k scripts 11k downloads 511 mentions 17 exports 62 dependencies

Last updated 20 days agofrom:5dc7e05494. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-win-x86_64OKNov 18 2024
R-4.5-linux-x86_64OKNov 18 2024
R-4.4-win-x86_64OKNov 18 2024
R-4.4-mac-x86_64OKNov 18 2024
R-4.4-mac-aarch64OKNov 18 2024
R-4.3-win-x86_64OKNov 18 2024
R-4.3-mac-x86_64OKNov 18 2024
R-4.3-mac-aarch64OKNov 18 2024

Exports:ComBatComBat_seqempirical.controlsf.pvaluefstatsfsvairwsva.buildnum.svpsvaqsvaread.degradation.matrixssvasvasva_networksva.checksvaseqtwostepsva.build

Dependencies:annotateAnnotationDbiaskpassBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64blobcachemclicodetoolscpp11crayoncurlDBIedgeRfastmapformatRfutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDatagluehttrIRangesjsonliteKEGGRESTlambda.rlatticelifecyclelimmalocfitMatrixMatrixGenericsmatrixStatsmemoisemgcvmimenlmeopensslpkgconfigplogrpngR6rlangRSQLiteS4VectorssnowstatmodsurvivalsysUCSC.utilsvctrsXMLxtableXVectorzlibbioc

sva tutorial

Rendered fromsva.Rnwusingutils::Sweaveon Nov 18 2024.

Last update: 2020-03-22
Started: 2014-06-05

Readme and manuals