Package: squallms 1.1.0

William Kumler

squallms: Speedy quality assurance via lasso labeling for LC-MS data

squallms is a Bioconductor R package that implements a "semi-labeled" approach to untargeted mass spectrometry data. It pulls in raw data from mass-spec files to calculate several metrics that are then used to label MS features in bulk as high or low quality. These metrics of peak quality are then passed to a simple logistic model that produces a fully-labeled dataset suitable for downstream analysis.

Authors:William Kumler [aut, cre, cph]

squallms_1.1.0.tar.gz
squallms_1.1.0.zip(r-4.5)squallms_1.1.0.zip(r-4.4)squallms_1.1.0.zip(r-4.3)
squallms_1.1.0.tgz(r-4.4-any)squallms_1.1.0.tgz(r-4.3-any)
squallms_1.1.0.tar.gz(r-4.5-noble)squallms_1.1.0.tar.gz(r-4.4-noble)
squallms_1.1.0.tgz(r-4.4-emscripten)squallms_1.1.0.tgz(r-4.3-emscripten)
squallms.pdf |squallms.html
squallms/json (API)
NEWS

# Install 'squallms' in R:
install.packages('squallms', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/wkumler/squallms/issues

On BioConductor:squallms-1.1.0(bioc 3.21)squallms-1.0.0(bioc 3.20)

massspectrometrymetabolomicsproteomicslipidomicsshinyappsclassificationclusteringfeatureextractionprincipalcomponentregressionpreprocessingqualitycontrolvisualization

5.18 score 3 stars 5 scripts 80 downloads 8 exports 175 dependencies

Last updated 3 months agofrom:c717511c2b. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 22 2025
R-4.5-winOKJan 22 2025
R-4.5-linuxOKJan 22 2025
R-4.4-winOKJan 22 2025
R-4.4-macOKJan 22 2025
R-4.3-winOKJan 22 2025
R-4.3-macOKJan 22 2025

Exports:extractChromMetricslabelFeatsLassolabelFeatsManuallogModelFeatProblogModelFeatQualitymakeXcmsObjFlatpickyPCAupdateXcmsObjFeats

Dependencies:abindaffyaffyioAnnotationFilteraskpassbase64encBHBiobaseBiocBaseUtilsBiocGenericsBiocManagerBiocParallelbslibcachemcaretclasscliclockclueclustercodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDBIDelayedArraydiagramdigestdoParalleldplyre1071evaluatefansifarverfastmapfontawesomeforeachformatRfsfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2globalsgluegowergtablehardhathighrhmshtmltoolshtmlwidgetshttpuvhttrigraphimputeipredIRangesisobanditeratorsjquerylibjsonliteKernSmoothkeysknitrlabelinglambda.rlaterlatticelavalazyevallifecyclelimmalistenvlubridatemagrittrMALDIquantMASSMassSpecWaveletMatrixMatrixGenericsmatrixStatsmemoiseMetaboCoreUtilsmgcvmimeModelMetricsMsCoreUtilsMsExperimentMsFeaturesMSnbaseMultiAssayExperimentmunsellmzIDmzRncdf4nlmennetnumDerivopensslparallellypcaMethodspillarpkgconfigplotlyplyrpreprocessCoreprettyunitspROCprodlimprogressprogressrpromisesProtGenericsproxyPSMatchpurrrQFeaturesR6RaMSrappdirsRColorBrewerRcpprecipesreshape2Rhdf5librlangrmarkdownrpartS4ArraysS4VectorssassscalesshapeshinysnowsourcetoolsSparseArraySpectraSQUAREMstatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttimechangetimeDatetinytextzdbUCSC.utilsutf8vctrsviridisLitevsnwithrxcmsxfunXMLxml2xtableXVectoryaml

Introduction to squallms

Rendered fromintro_to_squallms.Rmdusingknitr::rmarkdownon Jan 22 2025.

Last update: 2024-06-07
Started: 2024-03-27