Package: spiky 1.13.0
Tim Triche
spiky: Spike-in calibration for cell-free MeDIP
spiky implements methods and model generation for cfMeDIP (cell-free methylated DNA immunoprecipitation) with spike-in controls. CfMeDIP is an enrichment protocol which avoids destructive conversion of scarce template, making it ideal as a "liquid biopsy," but creating certain challenges in comparing results across specimens, subjects, and experiments. The use of synthetic spike-in standard oligos allows diagnostics performed with cfMeDIP to quantitatively compare samples across subjects, experiments, and time points in both relative and absolute terms.
Authors:
spiky_1.13.0.tar.gz
spiky_1.13.0.zip(r-4.5)spiky_1.13.0.zip(r-4.4)spiky_1.13.0.zip(r-4.3)
spiky_1.13.0.tgz(r-4.4-any)spiky_1.13.0.tgz(r-4.3-any)
spiky_1.13.0.tar.gz(r-4.5-noble)spiky_1.13.0.tar.gz(r-4.4-noble)
spiky_1.13.0.tgz(r-4.4-emscripten)spiky_1.13.0.tgz(r-4.3-emscripten)
spiky.pdf |spiky.html✨
spiky/json (API)
NEWS
# Install 'spiky' in R: |
install.packages('spiky', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/trichelab/spiky/issues
- dedup - Spike-in counts for two samples, as a wide data.frame
- genbank_mito - Various mitochondrial genomes sometimes used as endogenous spike-ins
- genomic_res - A Granges object with genomic coverage from chr21q22, binned every 300bp for the genomic contigs then averaged across the bin. (In other words, the default output of scan_genomic_contigs or scan_genomic_bedpe, restricted to a small enough set of genomic regions to be practical for examples.) This represents what most users will want to generate from their own genomic BAMs or BEDPEs, and is used repeatedly in downstream examples throughout the package.
- phage - Lambda and phiX phage sequences, sometimes used as spike-ins
- spike - Spike-in contig properties for Sam's cfMeDIP spikes
- spike_cram_counts - Spike-in counts, as a long data.frame
- spike_read_counts - Spike-in counts, as a long data.frame
- spike_res - A Granges object with spike-in sequence coverage, and summarized for each spike contig as (the default) 'max' coverage. (In other words, the default output of scan_spike_contigs or scan_spike_bedpe) This represents what most users will want to generate from their own spike-in BAMs or BEDPEs, and is used repeatedly in downstream examples throughout the package.
- ssb_res - Scan_spiked_bam results from a merged cfMeDIP CRAM file
- testGR - A test GRanges with UMI'ed genomic sequences used as controls
On BioConductor:spiky-1.13.0(bioc 3.21)spiky-1.12.0(bioc 3.20)
differentialmethylationdnamethylationnormalizationpreprocessingqualitycontrolsequencing
Last updated 23 days agofrom:1c71f59b69. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | NOTE | Nov 19 2024 |
R-4.5-linux | NOTE | Nov 19 2024 |
R-4.4-win | NOTE | Nov 19 2024 |
R-4.4-mac | NOTE | Nov 19 2024 |
R-4.3-win | NOTE | Nov 19 2024 |
R-4.3-mac | NOTE | Nov 19 2024 |
Exports:add_frag_infobam_to_binsbin_pmolconvertPairedGRtoGRcovg_to_dffind_spike_contigsgenerate_spike_fastaget_base_nameget_binned_coverageget_merged_grget_spike_depthget_spiked_coveragekmaxkmersmethylation_specificitymodel_bam_standardsmodel_glm_pmolparse_spike_UMIpredict_pmolprocess_spikesread_bedperename_spike_seqlevelsrename_spikesscan_genomic_bedpescan_genomic_contigsscan_methylation_specificityscan_spike_bedpescan_spike_contigsscan_spike_countsscan_spiked_bamseqinfo_from_headerspike_bland_altman_plotspike_countstile_bins
Dependencies:abindaskpassbamlssBHBiobaseBiocGenericsBiocIOBiocParallelBiostringsbitopsBlandAltmanLehBSgenomeclicodacodetoolscolorspacecpp11crayoncurlDelayedArraydistributions3fansifarverformatRFormulafutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicRangesggplot2gluegtablehttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsMBAmgcvmimemunsellmvtnormnlmeopensslpillarpkgconfigR6RColorBrewerRCurlrestfulrRhtslibrjsonrlangRsamtoolsrtracklayerS4ArraysS4VectorsscalessnowspSparseArraySummarizedExperimentsurvivalsystibbleUCSC.utilsutf8vctrsviridisLitewithrXMLXVectoryamlzlibbioc