Package: slalom 1.29.0

Davis McCarthy

slalom: Factorial Latent Variable Modeling of Single-Cell RNA-Seq Data

slalom is a scalable modelling framework for single-cell RNA-seq data that uses gene set annotations to dissect single-cell transcriptome heterogeneity, thereby allowing to identify biological drivers of cell-to-cell variability and model confounding factors. The method uses Bayesian factor analysis with a latent variable model to identify active pathways (selected by the user, e.g. KEGG pathways) that explain variation in a single-cell RNA-seq dataset. This an R/C++ implementation of the f-scLVM Python package. See the publication describing the method at https://doi.org/10.1186/s13059-017-1334-8.

Authors:Florian Buettner [aut], Naruemon Pratanwanich [aut], Davis McCarthy [aut, cre], John Marioni [aut], Oliver Stegle [aut]

slalom_1.29.0.tar.gz
slalom_1.29.0.zip(r-4.5)slalom_1.29.0.zip(r-4.4)slalom_1.29.0.zip(r-4.3)

slalom_1.29.0.tar.gz(r-4.5-noble)slalom_1.29.0.tar.gz(r-4.4-noble)
slalom.pdf |slalom.html
slalom/json (API)
NEWS

# Install 'slalom' in R:
install.packages('slalom', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • mesc - A single-cell expression dataset to demonstrate capabilities of slalom from mouse embryonic stem cells

On BioConductor:slalom-1.29.0(bioc 3.21)slalom-1.28.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologysinglecellrnaseqnormalizationvisualizationdimensionreductiontranscriptomicsgeneexpressionsequencingsoftwarereactomekeggopenblascpp

4.08 score 12 scripts 349 downloads 1 mentions 9 exports 78 dependencies

Last updated 2 months agofrom:9d5e3d4cc7. Checks:OK: 1 WARNING: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 27 2024
R-4.5-win-x86_64WARNINGNov 27 2024
R-4.5-linux-x86_64WARNINGNov 27 2024
R-4.4-win-x86_64WARNINGNov 27 2024
R-4.3-win-x86_64WARNINGNov 27 2024

Exports:addResultsToSingleCellExperimentinitSlalomnewSlalomModelplotLoadingsplotRelevanceplotTermstopTermstrainSlalomupdateSlalom

Dependencies:abindannotateAnnotationDbiaskpassBHBiobaseBiocGenericsBiostringsbitbit64blobcachemclicolorspacecpp11crayoncurlDBIDelayedArrayfansifarverfastmapgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegraphGSEABasegtablehttrIRangesisobandjsonliteKEGGRESTlabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigplogrpngR6RColorBrewerRcppRcppArmadillorlangRSQLitersvdS4ArraysS4VectorsscalesSingleCellExperimentSparseArraySummarizedExperimentsystibbleUCSC.utilsutf8vctrsviridisLitewithrXMLxtableXVectorzlibbioc

Introduction to slalom

Rendered fromvignette.Rmdusingknitr::rmarkdownon Nov 27 2024.

Last update: 2017-11-21
Started: 2017-10-06