Package: sigFeature 1.25.0

Pijush Das Developer

sigFeature: sigFeature: Significant feature selection using SVM-RFE & t-statistic

This package provides a novel feature selection algorithm for binary classification using support vector machine recursive feature elimination SVM-RFE and t-statistic. In this feature selection process, the selected features are differentially significant between the two classes and also they are good classifier with higher degree of classification accuracy.

Authors:Pijush Das Developer [aut, cre], Dr. Susanta Roychudhury User [ctb], Dr. Sucheta Tripathy User [ctb]

sigFeature_1.25.0.tar.gz
sigFeature_1.25.0.zip(r-4.5)sigFeature_1.25.0.zip(r-4.4)sigFeature_1.25.0.zip(r-4.3)
sigFeature_1.25.0.tgz(r-4.4-any)sigFeature_1.25.0.tgz(r-4.3-any)
sigFeature_1.25.0.tar.gz(r-4.5-noble)sigFeature_1.25.0.tar.gz(r-4.4-noble)
sigFeature_1.25.0.tgz(r-4.4-emscripten)sigFeature_1.25.0.tgz(r-4.3-emscripten)
sigFeature.pdf |sigFeature.html
sigFeature/json (API)
NEWS

# Install 'sigFeature' in R:
install.packages('sigFeature', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • ExampleRawData - Example dataset to test the performance of the sigFeature package.
  • featsweepSigFe - Processed output data after using the function named "sigCVError()".
  • featureRankedList - Processed output data after using the function named "svmrfeFeatureRanking()".
  • results - Processed output data after using the function named "sigFeature.enfold()".
  • sigfeatureRankedList - Processed output data after using the function named "sigFeature()".

On BioConductor:sigFeature-1.25.0(bioc 3.21)sigFeature-1.24.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

featureextractiongeneexpressionmicroarraytranscriptionmrnamicroarraygenepredictionnormalizationclassificationsupportvectormachine

4.92 score 21 scripts 398 downloads 4 mentions 8 exports 69 dependencies

Last updated 23 days agofrom:ac23f1c3c6. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winWARNINGNov 04 2024
R-4.5-linuxWARNINGNov 04 2024
R-4.4-winWARNINGNov 04 2024
R-4.4-macWARNINGNov 04 2024
R-4.3-winWARNINGNov 04 2024
R-4.3-macWARNINGNov 04 2024

Exports:PlotErrorssigCVErrorsigFeaturesigFeature.enfoldsigFeatureFrequencysigFeaturePvaluesvmrfeFeatureRankingWritesigFeature

Dependencies:abindaskpassBHBiobaseBiocGenericsBiocManagerBiocParallelbiocViewsbitopsclassclicodetoolscolorspacecpp11crayoncurlDelayedArraye1071farverformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesgluegraphgtablehttrIRangesjsonlitelabelinglambda.rlatticelifecycleMASSMatrixMatrixGenericsmatrixStatsmimemunsellnlmeopensslopenxlsxpheatmapproxyR6RBGLRColorBrewerRcppRCurlrlangRUnitS4ArraysS4VectorsscalessnowSparseArraySparseMstringiSummarizedExperimentsysUCSC.utilsviridisLiteXMLXVectorzipzlibbioc

sigFeature: Significant feature selection using SVM-RFE & t-statistic

Rendered fromvignettes.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2021-09-14
Started: 2018-04-04