Package: scQTLtools 0.99.11
scQTLtools: An R package for single-cell eQTL analysis and visualization
This package specializes in analyzing and visualizing eQTL at the single-cell level. It can read gene expression matrices or Seurat data, or SingleCellExperiment object along with genotype data. It offers a function for cis-eQTL analysis to detect eQTL within a given range, and another function to fit models with three methods. Using this package, users can also generate single-cell level visualization result.
Authors:
scQTLtools_0.99.11.tar.gz
scQTLtools_0.99.11.zip(r-4.5)scQTLtools_0.99.11.zip(r-4.4)
scQTLtools_0.99.11.tgz(r-4.5-any)scQTLtools_0.99.11.tgz(r-4.4-any)
scQTLtools_0.99.11.tar.gz(r-4.5-noble)scQTLtools_0.99.11.tar.gz(r-4.4-noble)
scQTLtools_0.99.11.tgz(r-4.4-emscripten)
scQTLtools.pdf |scQTLtools.html✨
scQTLtools/json (API)
NEWS
# Install 'scQTLtools' in R: |
install.packages('scQTLtools', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/xfwucn/scqtltools/issues
- testEQTL - Test eqtl object
- testGene - Test Gene Expression Dataset
- testSNP - Test Genotype Dataset
- testSNP2 - Test Genotype Dataset
- testSeurat - Test SeuratObject
On BioConductor:scQTLtools-0.99.11(bioc 3.21)
softwaregeneexpressiongeneticvariabilitysnpdifferentialexpressiongenomicvariationvariantdetectiongeneticsfunctionalgenomicssystemsbiologyregressionsinglecellnormalizationvisualizationrna-seqsc-eqtl
Last updated 1 months agofrom:ea832403d6. Checks:5 OK, 1 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 31 2025 |
R-4.5-win | OK | Jan 31 2025 |
R-4.5-mac | WARNING | Jan 31 2025 |
R-4.5-linux | OK | Jan 31 2025 |
R-4.4-win | OK | Jan 31 2025 |
R-4.4-mac | OK | Jan 31 2025 |
Exports:adjust_pvaluesbuildZINBcallQTLcheckSNPListCPM_normalizecreateGeneLoccreateQTLObjectcreateSNPsLocDESeq_normalizedraw_boxplotdraw_histplotdraw_QTLplotdraw_violinplotfilter_by_abs_bfilterGeneSNPget_cell_groupsget_countsget_filter_dataget_model_infoget_raw_dataget_result_infoinitialize_progress_barlimma_normalizelinearModelload_biclassify_infoload_group_infoload_species_infolog_normalizenormalizeGeneplots_theme_optspoissonModelprocess_matrixremove_outliersset_filter_dataset_model_infoset_raw_dataset_result_infoTPM_normalizevisualizeQTLzinbModel
Dependencies:abindAnnotationDbiaskpassBHBiobaseBiocFileCacheBiocGenericsBiocParallelbiomaRtBiostringsbitbit64blobcachemclicodetoolscolorspacecpp11crayoncurlDBIdbplyrDelayedArrayDESeq2digestdotCall64dplyrfansifarverfastmapfilelockformatRfsfutile.loggerfutile.optionsfuturefuture.applygamlssgamlss.datagamlss.distgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2globalsglueGO.dbGOSemSimgtablehmshttrhttr2IRangesisobandjsonliteKEGGRESTlabelinglambda.rlatticelifecyclelimmalistenvlocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslparallellypatchworkpillarpkgconfigplogrpngprettyunitsprogressprogressrpurrrR.methodsS3R.ooR.utilsR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenrlangRSQLiteS4ArraysS4VectorsscalesSeuratObjectSingleCellExperimentsnowspspamSparseArraystatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectUCSC.utilsutf8vctrsVGAMviridisLitewithrxml2XVectoryulab.utils