Package: scMitoMut 1.3.0

Wenjie Sun

scMitoMut: Single-cell Mitochondrial Mutation Analysis Tool

This package is designed for calling lineage-informative mitochondrial mutations using single-cell sequencing data, such as scRNASeq and scATACSeq (preferably the latter due to RNA editing issues). It includes functions for mutation calling and visualization. Mutation calling is done using beta-binomial distribution.

Authors:Wenjie Sun [cre, aut], Leila Perie [ctb]

scMitoMut_1.3.0.tar.gz
scMitoMut_1.3.0.zip(r-4.5)scMitoMut_1.3.0.zip(r-4.4)scMitoMut_1.3.0.zip(r-4.3)
scMitoMut_1.3.0.tgz(r-4.4-x86_64)scMitoMut_1.3.0.tgz(r-4.4-arm64)scMitoMut_1.3.0.tgz(r-4.3-x86_64)scMitoMut_1.3.0.tgz(r-4.3-arm64)
scMitoMut_1.3.0.tar.gz(r-4.5-noble)scMitoMut_1.3.0.tar.gz(r-4.4-noble)
scMitoMut_1.3.0.tgz(r-4.4-emscripten)scMitoMut_1.3.0.tgz(r-4.3-emscripten)
scMitoMut.pdf |scMitoMut.html
scMitoMut/json (API)
NEWS

# Install 'scMitoMut' in R:
install.packages('scMitoMut', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/wenjie1991/scmitomut/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On BioConductor:scMitoMut-1.3.0(bioc 3.21)scMitoMut-1.2.0(bioc 3.20)

preprocessingsequencingsinglecell

4.95 score 2 stars 4 scripts 161 downloads 18 exports 51 dependencies

Last updated 23 days agofrom:a88b08751a. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-win-x86_64NOTENov 18 2024
R-4.5-linux-x86_64NOTENov 18 2024
R-4.4-win-x86_64NOTENov 18 2024
R-4.4-mac-x86_64NOTENov 18 2024
R-4.4-mac-aarch64NOTENov 18 2024
R-4.3-win-x86_64NOTENov 18 2024
R-4.3-mac-x86_64NOTENov 18 2024
R-4.3-mac-aarch64NOTENov 18 2024

Exports:export_afexport_binaryexport_dfexport_dtexport_pvalfilter_locget_pvalis.mtmutObjopen_h5_fileparse_mgatkparse_tableplot_af_coverageplot_heatmapprocess_locus_bmbbrm_mtmutObjrun_model_fitsubset_cellsubset_loc

Dependencies:bitbit64clicliprcolorspacecpp11crayondata.tablefansifarverggplot2gluegtablehmsisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepheatmappillarpkgconfigplyrprettyunitsprogressR6RColorBrewerRcppRcppArmadilloreadrrhdf5rhdf5filtersRhdf5librlangscalesstringistringrtibbletidyselecttzdbutf8vctrsviridisLitevroomwithrzlibbioc

scMitoMut demo: CRC dataset

Rendered fromAnalysis_colon_cancer_dataset.Rmdusingknitr::rmarkdownon Nov 18 2024.

Last update: 2024-07-26
Started: 2023-07-27

Readme and manuals

Help Manual

Help pageTopics
Export the mutation matrixexport_af export_binary export_df export_dt export_pval
Filter mutationsfilter_loc
Print mtmutObj objectformat.mtmutObj is.mtmutObj print.mtmutObj
Get p-value list for single locusget_pval
Open H5 fileopen_h5_file
Load mtGATK outputparse_mgatk
Load allele count tableparse_table
QC plot: 2D scatter plot for coverage ~ AFplot_af_coverage
Heatmap plotplot_heatmap
Fit tree models for one locusprocess_locus_bmbb
Remove mtmutObj objectrm_mtmutObj
Fit binomial mixture model for every candidate locusrun_model_fit
scMitoMutscMitoMut-package scMitoMut
Subset cell and locisubset_cell subset_loc