Package: scFeatureFilter 1.27.0

Guillaume Devailly

scFeatureFilter: A correlation-based method for quality filtering of single-cell RNAseq data

An R implementation of the correlation-based method developed in the Joshi laboratory to analyse and filter processed single-cell RNAseq data. It returns a filtered version of the data containing only genes expression values unaffected by systematic noise.

Authors:Angeles Arzalluz-Luque [aut], Guillaume Devailly [aut, cre], Anagha Joshi [aut]

scFeatureFilter_1.27.0.tar.gz
scFeatureFilter_1.27.0.zip(r-4.5)scFeatureFilter_1.27.0.zip(r-4.4)scFeatureFilter_1.27.0.zip(r-4.3)
scFeatureFilter_1.27.0.tgz(r-4.4-any)scFeatureFilter_1.27.0.tgz(r-4.3-any)
scFeatureFilter_1.27.0.tar.gz(r-4.5-noble)scFeatureFilter_1.27.0.tar.gz(r-4.4-noble)
scFeatureFilter_1.27.0.tgz(r-4.4-emscripten)scFeatureFilter_1.27.0.tgz(r-4.3-emscripten)
scFeatureFilter.pdf |scFeatureFilter.html
scFeatureFilter/json (API)
NEWS

# Install 'scFeatureFilter' in R:
install.packages('scFeatureFilter', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • scData_hESC - Expression data from 32 human embryonic stem cells

On BioConductor:scFeatureFilter-1.27.0(bioc 3.21)scFeatureFilter-1.26.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologysinglecellrnaseqpreprocessinggeneexpression

4.30 score 20 scripts 184 downloads 13 exports 31 dependencies

Last updated 2 months agofrom:ef82e3e77e. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 30 2024
R-4.5-winNOTENov 30 2024
R-4.5-linuxNOTENov 30 2024
R-4.4-winOKNov 30 2024
R-4.4-macOKNov 30 2024
R-4.3-winOKNov 30 2024
R-4.3-macOKNov 30 2024

Exports:bin_scdatacalculate_cvscorrelate_windowscorrelations_to_densitiesdefine_top_genesdetermine_bin_cutofffilter_expression_tableget_mean_medianplot_correlations_distributionsplot_mean_varianceplot_metricplot_top_window_autocorsc_feature_filter

Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr

Introduction to the scFeatureFilter package

Rendered fromIntroduction.Rmdusingknitr::rmarkdownon Nov 30 2024.

Last update: 2019-12-09
Started: 2017-09-26