Package: scDataviz 1.17.0
scDataviz: scDataviz: single cell dataviz and downstream analyses
In the single cell World, which includes flow cytometry, mass cytometry, single-cell RNA-seq (scRNA-seq), and others, there is a need to improve data visualisation and to bring analysis capabilities to researchers even from non-technical backgrounds. scDataviz attempts to fit into this space, while also catering for advanced users. Additonally, due to the way that scDataviz is designed, which is based on SingleCellExperiment, it has a 'plug and play' feel, and immediately lends itself as flexibile and compatibile with studies that go beyond scDataviz. Finally, the graphics in scDataviz are generated via the ggplot engine, which means that users can 'add on' features to these with ease.
Authors:
scDataviz_1.17.0.tar.gz
scDataviz_1.17.0.zip(r-4.5)scDataviz_1.17.0.zip(r-4.4)scDataviz_1.17.0.zip(r-4.3)
scDataviz_1.17.0.tgz(r-4.4-any)scDataviz_1.17.0.tgz(r-4.3-any)
scDataviz_1.17.0.tar.gz(r-4.5-noble)scDataviz_1.17.0.tar.gz(r-4.4-noble)
scDataviz_1.17.0.tgz(r-4.4-emscripten)
scDataviz.pdf |scDataviz.html✨
scDataviz/json (API)
NEWS
# Install 'scDataviz' in R: |
install.packages('scDataviz', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kevinblighe/scdataviz/issues
On BioConductor:scDataviz-1.17.0(bioc 3.21)scDataviz-1.16.0(bioc 3.20)
singlecellimmunooncologyrnaseqgeneexpressiontranscriptionflowcytometrymassspectrometrydataimport
Last updated 2 months agofrom:e17aeed400. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 30 2024 |
R-4.5-win | OK | Nov 30 2024 |
R-4.5-linux | OK | Nov 30 2024 |
R-4.4-win | OK | Nov 30 2024 |
R-4.4-mac | OK | Nov 30 2024 |
R-4.3-win | OK | Nov 30 2024 |
R-4.3-mac | OK | Nov 30 2024 |
Exports:basethemeclusKNNcontourPlotdownsampleByVarimportDatamarkerEnrichmentmarkerExpressionmarkerExpressionPerClustermetadataPlotperformUMAPplotClustersplotSignaturesprocessFCS
Dependencies:abindaskpassbase64encBHBiobaseBiocGenericsbitopsbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcorrplotcowplotcpp11crayoncrosstalkcurlcytolibdata.tableDelayedArraydeldirdigestdotCall64dplyrdqrngevaluatefansifarverfastDummiesfastmapfitdistrplusflowCoreFNNfontawesomefsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelazyevalleidenlifecyclelistenvlmtestmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellnlmeopensslparallellypatchworkpbapplypillarpkgconfigplotlyplyrpngpolyclipprogressrpromisespurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLreshape2reticulateRhdf5librlangrmarkdownROCRrprojrootRProtoBufLibRSpectraRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytexUCSC.utilsumaputf8uwotvctrsviridisLitewithrxfunxtableXVectoryamlzlibbioczoo