Package: scBFA 1.21.0
scBFA: A dimensionality reduction tool using gene detection pattern to mitigate noisy expression profile of scRNA-seq
This package is designed to model gene detection pattern of scRNA-seq through a binary factor analysis model. This model allows user to pass into a cell level covariate matrix X and gene level covariate matrix Q to account for nuisance variance(e.g batch effect), and it will output a low dimensional embedding matrix for downstream analysis.
Authors:
scBFA_1.21.0.tar.gz
scBFA_1.21.0.zip(r-4.5)scBFA_1.21.0.zip(r-4.4)scBFA_1.21.0.zip(r-4.3)
scBFA_1.21.0.tgz(r-4.4-any)scBFA_1.21.0.tgz(r-4.3-any)
scBFA_1.21.0.tar.gz(r-4.5-noble)scBFA_1.21.0.tar.gz(r-4.4-noble)
scBFA_1.21.0.tgz(r-4.4-emscripten)
scBFA.pdf |scBFA.html✨
scBFA/json (API)
NEWS
# Install 'scBFA' in R: |
install.packages('scBFA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- celltype - Cell types as labels of example scRNA-seq dataset
- celltype_toy - Toy cell type vector with 3 cell types generated for 5 cells in toy dataset
- disperPlot - Reference dataset
- exprdata - ScRNA-seq dataset
- zinb_toy - Example zinb object after fitting a toy dataset with 5 cells and 10 genes
On BioConductor:scBFA-1.21.0(bioc 3.21)scBFA-1.20.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
singlecelltranscriptomicsdimensionreductiongeneexpressionatacseqbatcheffectkeggqualitycontrol
Last updated 23 days agofrom:37ab3ecfe0. Checks:OK: 1 WARNING: 4 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win | WARNING | Nov 03 2024 |
R-4.5-linux | WARNING | Nov 03 2024 |
R-4.4-win | WARNING | Nov 03 2024 |
R-4.4-mac | NOTE | Nov 03 2024 |
R-4.3-win | WARNING | Nov 03 2024 |
R-4.3-mac | NOTE | Nov 03 2024 |
Exports:BinaryPCAdiagnosegetGeneExprgetLoadinggetScorescBFAscNoiseSim
Dependencies:abindADGofTestannotateAnnotationDbiaskpassbase64encBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64bitopsblobbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcopulacowplotcpp11crayoncrosstalkcurldata.tableDBIDelayedArraydeldirDESeq2digestdotCall64dplyrdqrngedgeRevaluatefansifarverfastDummiesfastmapfitdistrplusFNNfontawesomeformatRfsfutile.loggerfutile.optionsfuturefuture.applygenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragslgtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobandjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleidenlifecyclelimmalistenvlmtestlocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellmvtnormnlmenumDerivopensslparallellypatchworkpbapplypcaPPpillarpkgconfigplogrplotlyplyrpngpolyclipprogressrpromisespsplinepurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLreshape2reticulaterlangrmarkdownROCRrprojrootRSpectraRSQLiteRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosnowsoftImputesourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstablediststatmodstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytexUCSC.utilsutf8uwotvctrsviridisLitewithrxfunXMLxtableXVectoryamlzinbwavezlibbioczoo