Package: scBFA 1.21.0

Ruoxin Li

scBFA: A dimensionality reduction tool using gene detection pattern to mitigate noisy expression profile of scRNA-seq

This package is designed to model gene detection pattern of scRNA-seq through a binary factor analysis model. This model allows user to pass into a cell level covariate matrix X and gene level covariate matrix Q to account for nuisance variance(e.g batch effect), and it will output a low dimensional embedding matrix for downstream analysis.

Authors:Ruoxin Li [aut, cre], Gerald Quon [aut]

scBFA_1.21.0.tar.gz
scBFA_1.21.0.zip(r-4.5)scBFA_1.21.0.zip(r-4.4)scBFA_1.21.0.zip(r-4.3)
scBFA_1.21.0.tgz(r-4.4-any)scBFA_1.21.0.tgz(r-4.3-any)
scBFA_1.21.0.tar.gz(r-4.5-noble)scBFA_1.21.0.tar.gz(r-4.4-noble)
scBFA_1.21.0.tgz(r-4.4-emscripten)
scBFA.pdf |scBFA.html
scBFA/json (API)
NEWS

# Install 'scBFA' in R:
install.packages('scBFA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • celltype - Cell types as labels of example scRNA-seq dataset
  • celltype_toy - Toy cell type vector with 3 cell types generated for 5 cells in toy dataset
  • disperPlot - Reference dataset
  • exprdata - ScRNA-seq dataset
  • zinb_toy - Example zinb object after fitting a toy dataset with 5 cells and 10 genes

On BioConductor:scBFA-1.21.0(bioc 3.21)scBFA-1.20.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

singlecelltranscriptomicsdimensionreductiongeneexpressionatacseqbatcheffectkeggqualitycontrol

4.30 score 4 scripts 176 downloads 2 mentions 7 exports 195 dependencies

Last updated 2 months agofrom:37ab3ecfe0. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 03 2024
R-4.5-winNOTEDec 03 2024
R-4.5-linuxNOTEDec 03 2024
R-4.4-winNOTEDec 03 2024
R-4.4-macNOTEDec 03 2024
R-4.3-winNOTEDec 03 2024
R-4.3-macNOTEDec 03 2024

Exports:BinaryPCAdiagnosegetGeneExprgetLoadinggetScorescBFAscNoiseSim

Dependencies:abindADGofTestannotateAnnotationDbiaskpassbase64encBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64bitopsblobbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcopulacowplotcpp11crayoncrosstalkcurldata.tableDBIDelayedArraydeldirDESeq2digestdotCall64dplyrdqrngedgeRevaluatefansifarverfastDummiesfastmapfitdistrplusFNNfontawesomeformatRfsfutile.loggerfutile.optionsfuturefuture.applygenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragslgtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobandjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleidenlifecyclelimmalistenvlmtestlocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellmvtnormnlmenumDerivopensslparallellypatchworkpbapplypcaPPpillarpkgconfigplogrplotlyplyrpngpolyclipprogressrpromisespsplinepurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLreshape2reticulaterlangrmarkdownROCRrprojrootRSpectraRSQLiteRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosnowsoftImputesourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstablediststatmodstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytexUCSC.utilsutf8uwotvctrsviridisLitewithrxfunXMLxtableXVectoryamlzinbwavezlibbioczoo

Gene Detection Analysis for scRNA-seq

Rendered fromvignette.Rmdusingknitr::rmarkdownon Dec 03 2024.

Last update: 2019-08-07
Started: 2019-03-21