Package: runibic 1.29.0
runibic: runibic: row-based biclustering algorithm for analysis of gene expression data in R
This package implements UbiBic algorithm in R. This biclustering algorithm for analysis of gene expression data was introduced by Zhenjia Wang et al. in 2016. It is currently considered the most promising biclustering method for identification of meaningful structures in complex and noisy data.
Authors:
runibic_1.29.0.tar.gz
runibic_1.29.0.zip(r-4.5)runibic_1.29.0.zip(r-4.4)runibic_1.29.0.zip(r-4.3)
runibic_1.29.0.tar.gz(r-4.5-noble)runibic_1.29.0.tar.gz(r-4.4-noble)
runibic.pdf |runibic.html✨
runibic/json (API)
NEWS
# Install 'runibic' in R: |
install.packages('runibic', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/athril/runibic/issues
On BioConductor:runibic-1.29.0(bioc 3.21)runibic-1.28.0(bioc 3.20)
microarrayclusteringgeneexpressionsequencingcoveragecppopenmp
Last updated 5 months agofrom:c55baab949. Checks:1 OK, 5 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 27 2025 |
R-4.5-win-x86_64 | NOTE | Mar 27 2025 |
R-4.5-linux-x86_64 | NOTE | Mar 27 2025 |
R-4.4-win-x86_64 | NOTE | Mar 27 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 27 2025 |
R-4.3-win-x86_64 | NOTE | Mar 27 2025 |
Exports:backtrackLCSBCUnibicBCUnibicDcalculateLCSclusterpairwiseLCSrunibicruniDiscretizeset_runibic_paramsunisort
Dependencies:abindadditivityTestsaskpassbiclustBiobaseBiocGenericsbriocallrclassclicolorspacecpp11crayoncurlDelayedArraydescdiffobjdigestdplyrevaluatefansifarverflexclustfsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrIRangesisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemodeltoolsmunsellnlmeopensslpillarpkgbuildpkgconfigpkgloadpraiseprocessxpspurrrR6RColorBrewerRcpprlangrprojrootS4ArraysS4VectorsscalesSparseArraystringistringrSummarizedExperimentsystestthattibbletidyrtidyselectUCSC.utilsutf8vctrsviridisLitewaldowithrXVector
Citation
For the sequential and parallel versions of UniBic biclustering algorithm please use the following citations:
Zhenjia Wang, Guojun Li, Robert W. Robinson, Xiuzhen Huang; UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data. Scientific Reports 6, 2016; Article number: 23466 doi: doi:10.1038/srep23466">https://doi:10.1038/srep23466>
Patryk Orzechowski, Artur Pańszczyk, Xiuzhen Huang, Jason H. Moore; runibic: a Bioconductor package for parallel row-based biclustering of gene expression data Bioinformatics, 2018; bty512 doi: https://doi.org/10.1093/bioinformatics/bty512
If you found runibic package useful in your work, please use both or at least the second citation.
Corresponding BibTeX entries:
@Article{, title = {UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data.}, author = {Zhenjia Wang and Guojun Li and Robert W. Robinson and Xiuzhen Huang}, journal = {Scientific Reports}, volume = {6}, year = {2016}, pages = {23466}, doi = {doi:10.1038/srep23466}, }
@Article{, title = {{runibic}: a Bioconductor package for parallel row-based biclustering of gene expression data.}, author = {Patryk Orzechowski and Artur Pańszczyk and Xiuzhen Huang and Jason H. Moore}, journal = {Bioinformatics}, year = {2018}, pages = {bty512}, doi = {https://doi.org/10.1093/bioinformatics/bty512}, }
Readme and manuals
runibic: UniBic biclustering algorithm for R
This package contains implementation of UniBic biclustering algorithm for gene expression data [Wang2016] The algorithm tries to locate trend-preserving biclusters within complex and noisy data.
Functions
This package provides the following main functions:
-
BCUnibic
/runibic
- parallel UniBic for continuous data -
BCUnibicD
- parallel UniBic for discrete data
The package provides some additional functions:
-
pairwiseLCS
- calculates Longest Common Subsequence (LCS) between two vectors -
calculateLCS
- calculates LCSes between all pairs of the input dataset -
backtrackLCS
- recovers LCS from the dynamic programming matrix -
cluster
- main part of UniBic algorithm (biclusters seeding and expanding) -
unisort
- returns matrix of indexes based on the increasing order in each row -
discretize
- performs discretization using Fibonacci heap (sorting method used originally in UniBic) or standard sorting
Installation
The package may be installed as follows:
install.packages("devtools")
devtools::install_github("athril/runibic")
Example
Gene expression dataset
This example presents how to use runibic package on gene expression dataset:
library(runibic)
library(biclust)
data(BicatYeast)
res <- biclust(method=BCUnibic(),BicatYeast)
drawHeatmap(BicatYeast, res, 1)
parallelCoordinates(BicatYeast,res,1)
Summarized experiment
This example presents how to use runibic package on SummarizedExperiment:
library(runibic)
library(biclust)
library(SummarizedExperiment)
data(airway, package="airway")
se <- airway[1:20,]
res<- runibic(se)
parallelCoordinates(assays(se)[[1]], res[[1]], 2)
Tutorial
Please check runibic tutorial
Citation
For the original sequential version of the UniBic please use the following citation:
Zhenjia Wang, Guojun Li, Robert W. Robinson, Xiuzhen Huang UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data Scientific Reports 6, 2016; 23466, doi: https://doi:10.1038/srep23466
If you use in your work this package with parallel version of UniBic please use the following citation:
Patryk Orzechowski, Artur Pańszczyk, Xiuzhen Huang Jason H. Moore: runibic: a Bioconductor package for parallel row-based biclustering of gene expression data bioRxiv, 2017; 210682, doi: https://doi.org/10.1101/210682
BibTex entry:
@article{orzechowski2018runibic,
author = {Orzechowski, Patryk and Pańszczyk, Artur and Huang, Xiuzhen and Moore, Jason H},
title = {runibic: a Bioconductor package for parallel row-based biclustering of gene expression data},
journal = {Bioinformatics},
volume = {},
number = {},
pages = {bty512},
year = {2018},
doi = {10.1093/bioinformatics/bty512},
URL = {http://dx.doi.org/10.1093/bioinformatics/bty512},
eprint = {/oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty512/4/bty512.pdf}
}
References
- [Wang2016] Wang, Zhenjia, et al. "UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data." Scientific reports 6 (2016): 23466.
Help Manual
Help page | Topics |
---|---|
Retrieving a Longest Common Subsequence between two integer vectors. | backtrackLCS |
Class BCUnibic | BCUnibic-class |
Class BCUnibicD | BCUnibicD-class |
Calculate all Longest Common Subsequences between a matrix. | calculateLCS |
Calculate biclusters from sorted list of LCS scores and row indices | cluster |
Calculate a matrix of Longest Common Subsequence (LCS) between a pair of numeric vectors | pairwiseLCS |
runibic: parallel row-based biclustering algorithm for analysis of gene expression data in R | runibic-package BCUnibic BCUnibicD runibic |
Discretize an input matrix | runiDiscretize |
Set the parameters for runibic algorithm | set_runibic_params |
Computing the indexes of j-th smallest values of each row | unisort |