Package: proDA 1.21.0
proDA: Differential Abundance Analysis of Label-Free Mass Spectrometry Data
Account for missing values in label-free mass spectrometry data without imputation. The package implements a probabilistic dropout model that ensures that the information from observed and missing values are properly combined. It adds empirical Bayesian priors to increase power to detect differentially abundant proteins.
Authors:
proDA_1.21.0.tar.gz
proDA_1.21.0.zip(r-4.5)proDA_1.21.0.zip(r-4.4)proDA_1.21.0.zip(r-4.3)
proDA_1.21.0.tgz(r-4.4-any)proDA_1.21.0.tgz(r-4.3-any)
proDA_1.21.0.tar.gz(r-4.5-noble)proDA_1.21.0.tar.gz(r-4.4-noble)
proDA_1.21.0.tgz(r-4.4-emscripten)proDA_1.21.0.tgz(r-4.3-emscripten)
proDA.pdf |proDA.html✨
proDA/json (API)
NEWS
# Install 'proDA' in R: |
install.packages('proDA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/const-ae/proda/issues
On BioConductor:proDA-1.21.0(bioc 3.21)proDA-1.20.0(bioc 3.20)
proteomicsmassspectrometrydifferentialexpressionbayesianregressionsoftwarenormalizationqualitycontrol
Last updated 2 months agofrom:217e7c7229. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 17 2024 |
R-4.5-win | OK | Dec 17 2024 |
R-4.5-linux | OK | Dec 17 2024 |
R-4.4-win | NOTE | Dec 17 2024 |
R-4.4-mac | NOTE | Dec 17 2024 |
R-4.3-win | NOTE | Dec 17 2024 |
R-4.3-mac | NOTE | Dec 17 2024 |
Exports:abundancescoefficient_variance_matricescoefficientsconvergencedesigndist_approxfeature_parametersgenerate_synthetic_datahyper_parametersinvprobitmedian_normalizationpd_lmpd_row_f_testpd_row_t_testpredictproDAreference_levelresult_namestest_diff
Dependencies:abindaskpassBiobaseBiocGenericscrayoncurlDelayedArrayextraDistrgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesjsonlitelatticeMatrixMatrixGenericsmatrixStatsmimeopensslR6RcppS4ArraysS4VectorsSparseArraySummarizedExperimentsysUCSC.utilsXVectorzlibbioc