Package: ppcseq 1.15.0

Stefano Mangiola

ppcseq: Probabilistic Outlier Identification for RNA Sequencing Generalized Linear Models

Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.

Authors:Stefano Mangiola [aut, cre]

ppcseq_1.15.0.tar.gz
ppcseq_1.15.0.zip(r-4.5)ppcseq_1.15.0.zip(r-4.4)ppcseq_1.15.0.zip(r-4.3)
ppcseq_1.15.0.tgz(r-4.4-x86_64)ppcseq_1.15.0.tgz(r-4.4-arm64)ppcseq_1.15.0.tgz(r-4.3-x86_64)ppcseq_1.15.0.tgz(r-4.3-arm64)
ppcseq_1.15.0.tar.gz(r-4.5-noble)ppcseq_1.15.0.tar.gz(r-4.4-noble)
ppcseq.pdf |ppcseq.html
ppcseq/json (API)

# Install 'ppcseq' in R:
install.packages('ppcseq', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/stemangiola/ppcseq/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On BioConductor:ppcseq-1.15.0(bioc 3.21)ppcseq-1.14.0(bioc 3.20)

rnaseqdifferentialexpressiongeneexpressionnormalizationclusteringqualitycontrolsequencingtranscriptiontranscriptomicsbayesian-inferencedeseq2edgernegative-binomialoutlierstan

5.65 score 7 stars 16 scripts 175 downloads 2 exports 83 dependencies

Last updated 23 days agofrom:403820a7ef. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-win-x86_64NOTEOct 31 2024
R-4.5-linux-x86_64NOTEOct 31 2024
R-4.4-win-x86_64NOTEOct 31 2024
R-4.4-mac-x86_64NOTEOct 31 2024
R-4.4-mac-aarch64NOTEOct 31 2024
R-4.3-win-x86_64NOTEOct 31 2024
R-4.3-mac-x86_64NOTEOct 31 2024
R-4.3-mac-aarch64NOTEOct 31 2024

Exports:identify_outliersplot_credible_intervals

Dependencies:abindarrayhelpersaskpassbackportsbenchmarkmebenchmarkmeDataBHcallrcheckmateclicodacodetoolscolorspacecpp11curldescdistributionaldoParalleldplyredgeRfansifarverforeachgenericsggdistggplot2gluegridExtragtablehttrinlineisobanditeratorsjsonlitelabelinglatticelifecyclelimmalocfitloomagrittrMASSMatrixmatrixStatsmgcvmimemunsellnlmenumDerivopensslpillarpkgbuildpkgconfigposteriorprocessxpspurrrquadprogQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelrlangrstanrstantoolsscalesStanHeadersstatmodstringistringrsvUnitsystensorAtibbletidybayestidyrtidyselectutf8vctrsviridisLitewithr

Probabilistic Outlier Identification for RNA Sequencing Generalized Linear Models

Rendered fromintroduction.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2023-09-14
Started: 2020-11-05