Package: pengls 1.13.0

Stijn Hawinkel

pengls: Fit Penalised Generalised Least Squares models

Combine generalised least squares methodology from the nlme package for dealing with autocorrelation with penalised least squares methods from the glmnet package to deal with high dimensionality. This pengls packages glues them together through an iterative loop. The resulting method is applicable to high dimensional datasets that exhibit autocorrelation, such as spatial or temporal data.

Authors:Stijn Hawinkel [cre, aut]

pengls_1.13.0.tar.gz
pengls_1.13.0.zip(r-4.5)pengls_1.13.0.zip(r-4.4)pengls_1.13.0.zip(r-4.3)
pengls_1.13.0.tgz(r-4.4-any)pengls_1.13.0.tgz(r-4.3-any)
pengls_1.13.0.tar.gz(r-4.5-noble)pengls_1.13.0.tar.gz(r-4.4-noble)
pengls_1.13.0.tgz(r-4.4-emscripten)pengls_1.13.0.tgz(r-4.3-emscripten)
pengls.pdf |pengls.html
pengls/json (API)
NEWS

# Install 'pengls' in R:
install.packages('pengls', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sthawinke/pengls/issues

On BioConductor:pengls-1.11.0(bioc 3.20)pengls-1.10.0(bioc 3.19)

transcriptomicsregressiontimecoursespatial

4.00 score 4 scripts 116 downloads 3 exports 19 dependencies

Last updated 23 days agofrom:1a0f003a26. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:cv.penglsmakeFoldspengls

Dependencies:BHBiocParallelcodetoolscpp11foreachformatRfutile.loggerfutile.optionsglmnetiteratorslambda.rlatticeMatrixnlmeRcppRcppEigenshapesnowsurvival

Vignette of the pengls package

Rendered frompenglsVignette.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2022-10-10
Started: 2021-09-20