Package: pengls 1.13.0

Stijn Hawinkel

pengls: Fit Penalised Generalised Least Squares models

Combine generalised least squares methodology from the nlme package for dealing with autocorrelation with penalised least squares methods from the glmnet package to deal with high dimensionality. This pengls packages glues them together through an iterative loop. The resulting method is applicable to high dimensional datasets that exhibit autocorrelation, such as spatial or temporal data.

Authors:Stijn Hawinkel [cre, aut]

pengls_1.13.0.tar.gz
pengls_1.13.0.zip(r-4.5)pengls_1.13.0.zip(r-4.4)pengls_1.13.0.zip(r-4.3)
pengls_1.13.0.tgz(r-4.5-any)pengls_1.13.0.tgz(r-4.4-any)pengls_1.13.0.tgz(r-4.3-any)
pengls_1.13.0.tar.gz(r-4.5-noble)pengls_1.13.0.tar.gz(r-4.4-noble)
pengls_1.13.0.tgz(r-4.4-emscripten)pengls_1.13.0.tgz(r-4.3-emscripten)
pengls.pdf |pengls.html
pengls/json (API)
NEWS

# Install 'pengls' in R:
install.packages('pengls', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/sthawinke/pengls/issues

On BioConductor:pengls-1.13.0(bioc 3.21)pengls-1.12.0(bioc 3.20)

transcriptomicsregressiontimecoursespatial

4.00 score 4 scripts 156 downloads 3 exports 19 dependencies

Last updated 4 months agofrom:1a0f003a26. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 28 2025
R-4.5-winOKJan 28 2025
R-4.5-macOKJan 28 2025
R-4.5-linuxOKJan 28 2025
R-4.4-winOKJan 28 2025
R-4.4-macOKJan 28 2025
R-4.3-winOKJan 28 2025
R-4.3-macOKJan 28 2025

Exports:cv.penglsmakeFoldspengls

Dependencies:BHBiocParallelcodetoolscpp11foreachformatRfutile.loggerfutile.optionsglmnetiteratorslambda.rlatticeMatrixnlmeRcppRcppEigenshapesnowsurvival

Vignette of the pengls package

Rendered frompenglsVignette.Rmdusingknitr::rmarkdownon Jan 28 2025.

Last update: 2022-10-10
Started: 2021-09-20