Package: pathwayPCA 1.23.0
Gabriel Odom
pathwayPCA: Integrative Pathway Analysis with Modern PCA Methodology and Gene Selection
pathwayPCA is an integrative analysis tool that implements the principal component analysis (PCA) based pathway analysis approaches described in Chen et al. (2008), Chen et al. (2010), and Chen (2011). pathwayPCA allows users to: (1) Test pathway association with binary, continuous, or survival phenotypes. (2) Extract relevant genes in the pathways using the SuperPCA and AES-PCA approaches. (3) Compute principal components (PCs) based on the selected genes. These estimated latent variables represent pathway activities for individual subjects, which can then be used to perform integrative pathway analysis, such as multi-omics analysis. (4) Extract relevant genes that drive pathway significance as well as data corresponding to these relevant genes for additional in-depth analysis. (5) Perform analyses with enhanced computational efficiency with parallel computing and enhanced data safety with S4-class data objects. (6) Analyze studies with complex experimental designs, with multiple covariates, and with interaction effects, e.g., testing whether pathway association with clinical phenotype is different between male and female subjects. Citations: Chen et al. (2008) <https://doi.org/10.1093/bioinformatics/btn458>; Chen et al. (2010) <https://doi.org/10.1002/gepi.20532>; and Chen (2011) <https://doi.org/10.2202/1544-6115.1697>.
Authors:
pathwayPCA_1.23.0.tar.gz
pathwayPCA_1.23.0.zip(r-4.5)pathwayPCA_1.23.0.zip(r-4.4)pathwayPCA_1.23.0.zip(r-4.3)
pathwayPCA_1.23.0.tgz(r-4.4-any)pathwayPCA_1.23.0.tgz(r-4.3-any)
pathwayPCA_1.23.0.tar.gz(r-4.5-noble)pathwayPCA_1.23.0.tar.gz(r-4.4-noble)
pathwayPCA_1.23.0.tgz(r-4.4-emscripten)pathwayPCA_1.23.0.tgz(r-4.3-emscripten)
pathwayPCA.pdf |pathwayPCA.html✨
pathwayPCA/json (API)
NEWS
# Install 'pathwayPCA' in R: |
install.packages('pathwayPCA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gabrielodom/pathwaypca/issues
- colonSurv_df - Colon Cancer -Omics Data
- colon_pathwayCollection - Gene Pathway Subset
- wikipwsHS_Entrez_pathwayCollection - Wikipathways Homosapiens EntrezIDs
- wikipwsHS_Symbol_pathwayCollection - Wikipathways Homosapiens Gene Symbols
On BioConductor:pathwayPCA-1.23.0(bioc 3.21)pathwayPCA-1.22.0(bioc 3.20)
copynumbervariationdnamethylationgeneexpressionsnptranscriptiongenepredictiongenesetenrichmentgenesignalinggenetargetgenomewideassociationgenomicvariationcellbiologyepigeneticsfunctionalgenomicsgeneticslipidomicsmetabolomicsproteomicssystemsbiologytranscriptomicsclassificationdimensionreductionfeatureextractionprincipalcomponentregressionsurvivalmultiplecomparisonpathways
Last updated 2 months agofrom:c68c52f6a8. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 29 2024 |
R-4.5-win | NOTE | Nov 29 2024 |
R-4.5-linux | NOTE | Nov 29 2024 |
R-4.4-win | NOTE | Nov 29 2024 |
R-4.4-mac | NOTE | Nov 29 2024 |
R-4.3-win | NOTE | Nov 29 2024 |
R-4.3-mac | NOTE | Nov 29 2024 |
Exports:aespcaAESPCA_pValsContainsCreateOmicsCreatePathwayCollectionExtractAESPCsgetAssaygetAssay<-getEventgetEvent<-getEventTimegetEventTime<-getPathPCLsgetPathpValsgetPathwayCollectiongetPathwayCollection<-getResponsegetResponse<-getSampleIDsgetSampleIDs<-getTrimPathwayCollectionLoadOntoPCsread_gmtSE2TidyshowSubsetPathwayDataSuperPCA_pValsTransposeAssayWhichPathwayswrite_gmt
Integrative Pathway Analysis with pathwayPCA
Rendered fromIntroduction_to_pathwayPCA.Rmd
usingknitr::rmarkdown
on Nov 29 2024.Last update: 2020-11-30
Started: 2018-12-14
Suppl. Ch. 1 - Quickstart Guide for New R Users
Rendered fromSupplement1-Quickstart_Guide.Rmd
usingknitr::rmarkdown
on Nov 29 2024.Last update: 2019-04-15
Started: 2018-12-14
Suppl. Ch. 2 - Import and Tidy Data
Rendered fromSupplement2-Importing_Data.Rmd
usingknitr::rmarkdown
on Nov 29 2024.Last update: 2022-01-15
Started: 2018-12-14
Suppl. Ch. 3 - Creating Data Objects
Rendered fromSupplement3-Create_Omics_Objects.Rmd
usingknitr::rmarkdown
on Nov 29 2024.Last update: 2019-04-15
Started: 2018-12-14
Suppl. Ch. 4 - Test Pathway Significance
Rendered fromSupplement4-Methods_Walkthrough.Rmd
usingknitr::rmarkdown
on Nov 29 2024.Last update: 2019-04-15
Started: 2018-12-14
Suppl. Ch. 5 - Visualizing the Results
Rendered fromSupplement5-Analyse_Results.Rmd
usingknitr::rmarkdown
on Nov 29 2024.Last update: 2020-12-07
Started: 2018-12-14