Package: partCNV 1.5.0
partCNV: Infer locally aneuploid cells using single cell RNA-seq data
This package uses a statistical framework for rapid and accurate detection of aneuploid cells with local copy number deletion or amplification. Our method uses an EM algorithm with mixtures of Poisson distributions while incorporating cytogenetics information (e.g., regional deletion or amplification) to guide the classification (partCNV). When applicable, we further improve the accuracy by integrating a Hidden Markov Model for feature selection (partCNVH).
Authors:
partCNV_1.5.0.tar.gz
partCNV_1.5.0.zip(r-4.5)partCNV_1.5.0.zip(r-4.4)partCNV_1.5.0.zip(r-4.3)
partCNV_1.5.0.tgz(r-4.4-any)partCNV_1.5.0.tgz(r-4.3-any)
partCNV_1.5.0.tar.gz(r-4.5-noble)partCNV_1.5.0.tar.gz(r-4.4-noble)
partCNV_1.5.0.tgz(r-4.4-emscripten)
partCNV.pdf |partCNV.html✨
partCNV/json (API)
NEWS
# Install 'partCNV' in R: |
install.packages('partCNV', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- Hg38_gtf - GTF data for Hg38 genome
- SimData - Simulation data to examplify the usage of the method
- SimDataSce - Simulation SingleCellExperiment object to examplify the usage of the method
On BioConductor:partCNV-1.5.0(bioc 3.21)partCNV-1.4.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
softwarecopynumbervariationhiddenmarkovmodelsinglecellclassification
Last updated 2 months agofrom:91c5b2295c. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-win | NOTE | Nov 25 2024 |
R-4.5-linux | NOTE | Nov 25 2024 |
R-4.4-win | NOTE | Nov 25 2024 |
R-4.4-mac | NOTE | Nov 25 2024 |
R-4.3-win | NOTE | Nov 25 2024 |
R-4.3-mac | NOTE | Nov 25 2024 |
Exports:GetCytoLocationGetExprCountCytoNormalizeCountspartCNVpartCNVH
Dependencies:abindAnnotationDbiAnnotationHubaskpassbase64encBHBiobaseBiocFileCacheBiocGenericsBiocManagerBiocStyleBiocVersionBiostringsbitbit64bitopsblobbookdownbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcowplotcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArraydeldirdepmixS4digestdotCall64dplyrdqrngevaluatefansifarverfastDummiesfastmapfilelockfitdistrplusFNNfontawesomefsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobandjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglaterlatticelazyevalleidenlifecyclelistenvlmtestmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellnlmennetopensslparallellypatchworkpbapplypillarpkgconfigplogrplotlyplyrpngpolyclipprogressrpromisespurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLreshape2reticulaterlangrmarkdownROCRrprojrootRsolnpRSpectraRSQLiteRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytextruncnormUCSC.utilsutf8uwotvctrsviridisLitewithrxfunxtableXVectoryamlzlibbioczoo