Package: omada 1.9.0

Sokratis Kariotis

omada: Machine learning tools for automated transcriptome clustering analysis

Symptomatic heterogeneity in complex diseases reveals differences in molecular states that need to be investigated. However, selecting the numerous parameters of an exploratory clustering analysis in RNA profiling studies requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent and further gene association analyses need to be performed independently. We have developed a suite of tools to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning based functions. The efficiency of each tool was tested with four datasets characterised by different expression signal strengths. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Even in datasets with less clear biological distinctions, stable subgroups with different expression profiles and clinical associations were found.

Authors:Sokratis Kariotis [aut, cre]

omada_1.9.0.tar.gz
omada_1.9.0.zip(r-4.5)omada_1.9.0.zip(r-4.4)omada_1.9.0.zip(r-4.3)
omada_1.9.0.tgz(r-4.4-any)omada_1.9.0.tgz(r-4.3-any)
omada_1.9.0.tar.gz(r-4.5-noble)omada_1.9.0.tar.gz(r-4.4-noble)
omada_1.9.0.tgz(r-4.4-emscripten)omada_1.9.0.tgz(r-4.3-emscripten)
omada.pdf |omada.html
omada/json (API)
NEWS

# Install 'omada' in R:
install.packages('omada', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:omada-1.7.0(bioc 3.20)omada-1.6.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

softwareclusteringrnaseqgeneexpression

3.70 score 3 scripts 106 downloads 37 exports 141 dependencies

Last updated 23 days agofrom:5caa0b1ff5. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winNOTEOct 30 2024
R-4.5-linuxNOTEOct 30 2024
R-4.4-winNOTEOct 30 2024
R-4.4-macNOTEOct 30 2024
R-4.3-winNOTEOct 30 2024
R-4.3-macNOTEOct 30 2024

Exports:clusteringMethodSelectionclusterVotingfeasibilityAnalysisfeasibilityAnalysisDataBasedfeatureSelectionget_agreement_scoresget_average_feature_k_stabilitiesget_average_stabilities_per_kget_average_stabilityget_cluster_memberships_kget_cluster_voting_k_votesget_cluster_voting_membershipsget_cluster_voting_metric_votesget_cluster_voting_scoresget_feature_selection_optimal_featuresget_feature_selection_optimal_number_of_featuresget_feature_selection_scoresget_generated_datasetget_internal_metric_scoresget_max_stabilityget_metric_votes_kget_optimal_featuresget_optimal_membershipsget_optimal_number_of_featuresget_optimal_parameter_usedget_optimal_stability_scoreget_partition_agreement_scoresget_sample_membershipsget_vote_frequencies_komadaoptimalClusteringpartitionAgreementplot_average_stabilitiesplot_cluster_votingplot_feature_selectionplot_partition_agreementplot_vote_frequencies

Dependencies:abindade4assertthatbase64encBiobaseBiocGenericsBiocManagerbitbit64bslibcachemclassclassIntclicliprclueclusterclusterSimclvclValidcodetoolscolorspacecombinatcommonmarkcpp11crayonDEoptimRdiceRdigestdiptestdoParalleldplyre1071fansifarverfastmapflexmixfontawesomeforcatsforeachfpcfsgenericsgenieclustgeometryggplot2glmnetgluegridBasegtablegtoolshardhathavenhighrhmshtmltoolshttpuvinfotheoisobanditeratorsjquerylibjsonlitekernlabKernSmoothklaRlabelinglabelledlaterlatticelifecyclelinproglpSolvemagicmagrittrMASSMatrixmclustmemoisemgcvmimeminiUImodeltoolsmunsellnlmeNMFnnetpdfClusterpillarpixmappkgconfigplyrprabclusprettyunitsprogresspromisesproxypurrrquestionrR.cacheR.methodsS3R.ooR.utilsR6RankAggregrappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppProgressreadrregistryreshapereshape2rlangrngtoolsrobustbaserprojrootrstudioapisassscalesshapeshinysourcetoolsspstringistringrstylersurvivaltibbletidyrtidyselecttzdbutf8vctrsviridisLitevroomwithrxfunxtableyardstick

Omada, An unsupervised machine learning toolkit for automated sample clustering of gene expression profiles

Rendered fromomada-vignette.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2024-04-10
Started: 2022-05-23

Readme and manuals

Help Manual

Help pageTopics
Method Selection through intra-method Consensus Partition ConsistencyclusteringMethodSelection
Estimating number of clusters through internal exhaustive ensemble majority votingclusterVoting
Simulating dataset and calculate stabilities over different number of clustersfeasibilityAnalysis
Simulating dataset based on existing dataset's dimensions, mean and standard deviationfeasibilityAnalysisDataBased
Predictor variable subsampling sets and bootstrapping stability set selectionfeatureSelection
Get a dataframe of partition agreement scores for a set of random parameters clustering runs across different methodsget_agreement_scores
Get a dataframe of average bootstrap stabilitiesget_average_feature_k_stabilities
Get average stabilities for all numbers of clusters(k)get_average_stabilities_per_k
Get the average stability(over all k)get_average_stability
Get cluster memberships for every kget_cluster_memberships_k
Get k vote frequenciesget_cluster_voting_k_votes
Get cluster memberships for every kget_cluster_voting_memberships
Get a dataframe with the k votes for every indexget_cluster_voting_metric_votes
Get a matrix with metric scores for every k and internal indexget_cluster_voting_scores
Get the optimal featuresget_feature_selection_optimal_features
Get the optimal number of featuresget_feature_selection_optimal_number_of_features
Get a dataframe of average bootstrap stabilitiesget_feature_selection_scores
Get the simulated datasetget_generated_dataset
Get a matrix with metric scores for every k and internal indexget_internal_metric_scores
Get the maximum stabilityget_max_stability
Get a dataframe with the k votes for every indexget_metric_votes_k
Get the optimal featuresget_optimal_features
Get a dataframe with the memberships of the samples found in the input dataget_optimal_memberships
Get the optimal number of featuresget_optimal_number_of_features
Get the optimal parameter usedget_optimal_parameter_used
Get the optimal stability scoreget_optimal_stability_score
Get a dataframe of partition agreement scores for a set of random parameters clustering runs across different methodsget_partition_agreement_scores
Get a dataframe with the memberships of the samples found in the input dataget_sample_memberships
Get k vote frequenciesget_vote_frequencies_k
A wrapper function that utilizes all tools to produce the optimal sample membershipsomada
Clustering with the optimal parameters estimated by these toolsoptimalClustering
Partition Agreement calculation between two clustering runspartitionAgreement
Plot the average bootstrap stabilitiesplot_average_stabilities
Plot k vote frequenciesplot_cluster_voting
Plot the average bootstrap stabilitiesplot_feature_selection
Plot of partition agreement scoresplot_partition_agreement
Plot k vote frequenciesplot_vote_frequencies
Cluster memberships for toy gene data for package examplestoy_gene_memberships
Toy gene data for package examplestoy_genes