Package: multiWGCNA 1.5.0

Dario Tommasini

multiWGCNA: multiWGCNA

An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.

Authors:Dario Tommasini [aut, cre], Brent Fogel [aut, ctb]

multiWGCNA_1.5.0.tar.gz
multiWGCNA_1.5.0.zip(r-4.5)multiWGCNA_1.5.0.zip(r-4.4)multiWGCNA_1.5.0.zip(r-4.3)
multiWGCNA_1.5.0.tgz(r-4.4-any)multiWGCNA_1.5.0.tgz(r-4.3-any)
multiWGCNA_1.5.0.tar.gz(r-4.5-noble)multiWGCNA_1.5.0.tar.gz(r-4.4-noble)
multiWGCNA_1.5.0.tgz(r-4.4-emscripten)multiWGCNA_1.5.0.tgz(r-4.3-emscripten)
multiWGCNA.pdf |multiWGCNA.html
multiWGCNA/json (API)
NEWS

# Install 'multiWGCNA' in R:
install.packages('multiWGCNA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On BioConductor:multiWGCNA-1.5.0(bioc 3.21)multiWGCNA-1.4.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

sequencingrnaseqgeneexpressiondifferentialexpressionregressionclustering

4.48 score 6 scripts 216 downloads 26 exports 137 dependencies

Last updated 4 months agofrom:b2881a45d6. Checks:1 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 03 2025
R-4.5-winNOTEFeb 03 2025
R-4.5-linuxNOTEFeb 03 2025
R-4.4-winNOTEFeb 03 2025
R-4.4-macNOTEFeb 03 2025
R-4.3-winNOTEFeb 03 2025
R-4.3-macNOTEFeb 03 2025

Exports:bidirectionalBestMatchescleanDatExprcoexpressionLineGraphcomputeOverlapsFromWGCNAconstructNetworksdiffCoexpressiondiffModuleExpressiondrawMultiWGCNAnetworkGetDatExprgetPreservationiteratemakeTraitTablemoduleComparisonPlotmoduleExpressionPlotmoduleToModuleHeatmapnameoverlapComparisonsperformANOVApreservationComparisonPlotpreservationComparisonsPreservationPermutationTestPreservationScoreDistributionrunDMEsummarizeResultsTOMFlowPlottopNGenes

Dependencies:abindAnnotationDbiaskpassbackportsbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemcheckmatecirclizeclicliprclustercodetoolscolorspacecowplotcpp11crayoncurldata.tableDBIdcanrDelayedArraydigestdoParalleldoRNGdplyrdynamicTreeCutevaluatefansifarverfastclusterfastmapflashClustfontawesomeforeachforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggalluvialggplot2ggrepelGlobalOptionsglueGO.dbgridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetshttrigraphimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglatticelazyevallifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmennetopensslpatchworkpillarpkgconfigplogrplyrpngpreprocessCoreprettyunitsprogresspurrrR6rappdirsRColorBrewerRcppreadrreshape2rlangrmarkdownrngtoolsrpartRSQLiterstudioapiS4ArraysS4VectorssassscalesshapeSparseArraystringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttinytextzdbUCSC.utilsutf8vctrsviridisviridisLitevroomWGCNAwithrxfunXVectoryaml

multiWGCNA: visualizing condition-specific networks

Rendered fromastrocyte_map_v2.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2024-02-20
Started: 2023-06-06

multiWGCNA: the full workflow

Rendered fromautism_full_workflow.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2024-05-05
Started: 2023-06-30