Package: multiWGCNA 1.5.0
multiWGCNA: multiWGCNA
An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
Authors:
multiWGCNA_1.5.0.tar.gz
multiWGCNA_1.5.0.zip(r-4.5)multiWGCNA_1.5.0.zip(r-4.4)multiWGCNA_1.5.0.zip(r-4.3)
multiWGCNA_1.5.0.tgz(r-4.4-any)multiWGCNA_1.5.0.tgz(r-4.3-any)
multiWGCNA_1.5.0.tar.gz(r-4.5-noble)multiWGCNA_1.5.0.tar.gz(r-4.4-noble)
multiWGCNA_1.5.0.tgz(r-4.4-emscripten)multiWGCNA_1.5.0.tgz(r-4.3-emscripten)
multiWGCNA.pdf |multiWGCNA.html✨
multiWGCNA/json (API)
NEWS
# Install 'multiWGCNA' in R: |
install.packages('multiWGCNA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- permutationTestResults - Permutation test results
On BioConductor:multiWGCNA-1.5.0(bioc 3.21)multiWGCNA-1.4.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
sequencingrnaseqgeneexpressiondifferentialexpressionregressionclustering
Last updated 23 days agofrom:b2881a45d6. Checks:OK: 1 WARNING: 4 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | WARNING | Nov 05 2024 |
R-4.5-linux | WARNING | Nov 05 2024 |
R-4.4-win | WARNING | Nov 05 2024 |
R-4.4-mac | NOTE | Nov 05 2024 |
R-4.3-win | WARNING | Nov 05 2024 |
R-4.3-mac | NOTE | Nov 05 2024 |
Exports:bidirectionalBestMatchescleanDatExprcoexpressionLineGraphcomputeOverlapsFromWGCNAconstructNetworksdiffCoexpressiondiffModuleExpressiondrawMultiWGCNAnetworkGetDatExprgetPreservationiteratemakeTraitTablemoduleComparisonPlotmoduleExpressionPlotmoduleToModuleHeatmapnameoverlapComparisonsperformANOVApreservationComparisonPlotpreservationComparisonsPreservationPermutationTestPreservationScoreDistributionrunDMEsummarizeResultsTOMFlowPlottopNGenes
Dependencies:abindAnnotationDbiaskpassbackportsbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemcheckmatecirclizeclicliprclustercodetoolscolorspacecowplotcpp11crayoncurldata.tableDBIdcanrDelayedArraydigestdoParalleldoRNGdplyrdynamicTreeCutevaluatefansifarverfastclusterfastmapflashClustfontawesomeforeachforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggalluvialggplot2ggrepelGlobalOptionsglueGO.dbgridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetshttrigraphimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglatticelazyevallifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmennetopensslpatchworkpillarpkgconfigplogrplyrpngpreprocessCoreprettyunitsprogresspurrrR6rappdirsRColorBrewerRcppreadrreshape2rlangrmarkdownrngtoolsrpartRSQLiterstudioapiS4ArraysS4VectorssassscalesshapeSparseArraystringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttinytextzdbUCSC.utilsutf8vctrsviridisviridisLitevroomWGCNAwithrxfunXVectoryamlzlibbioc
multiWGCNA: visualizing condition-specific networks
Rendered fromastrocyte_map_v2.Rmd
usingknitr::rmarkdown
on Nov 05 2024.Last update: 2024-02-20
Started: 2023-06-06
multiWGCNA: the full workflow
Rendered fromautism_full_workflow.Rmd
usingknitr::rmarkdown
on Nov 05 2024.Last update: 2024-05-05
Started: 2023-06-30