Package: msmsEDA 1.45.0
msmsEDA: Exploratory Data Analysis of LC-MS/MS data by spectral counts
Exploratory data analysis to assess the quality of a set of LC-MS/MS experiments, and visualize de influence of the involved factors.
Authors:
msmsEDA_1.45.0.tar.gz
msmsEDA_1.45.0.zip(r-4.5)msmsEDA_1.45.0.zip(r-4.4)msmsEDA_1.45.0.zip(r-4.3)
msmsEDA_1.45.0.tgz(r-4.4-any)msmsEDA_1.45.0.tgz(r-4.3-any)
msmsEDA_1.45.0.tar.gz(r-4.5-noble)msmsEDA_1.45.0.tar.gz(r-4.4-noble)
msmsEDA_1.45.0.tgz(r-4.4-emscripten)msmsEDA_1.45.0.tgz(r-4.3-emscripten)
msmsEDA.pdf |msmsEDA.html✨
msmsEDA/json (API)
# Install 'msmsEDA' in R: |
install.packages('msmsEDA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- msms.dataset - LC-MS/MS dataset
- pnms - Accessions and gene symbols
On BioConductor:msmsEDA-1.45.0(bioc 3.21)msmsEDA-1.44.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
immunooncologysoftwaremassspectrometryproteomics
Last updated 3 months agofrom:42fe18df12. Checks:1 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 29 2024 |
R-4.5-win | NOTE | Dec 31 2024 |
R-4.5-linux | NOTE | Dec 29 2024 |
R-4.4-win | NOTE | Dec 31 2024 |
R-4.4-mac | NOTE | Dec 29 2024 |
R-4.3-win | NOTE | Nov 29 2024 |
R-4.3-mac | NOTE | Dec 29 2024 |
Exports:batch.neutralizecount.statscounts.hccounts.heatmapcounts.pcadisp.estimatesfilter.flagsgene.tablenorm.countspp.msms.dataspc.barplotsspc.boxplotsspc.densityplotsspc.scatterplot
Dependencies:abindaffyaffyioAnnotationFilteraskpassbase64encBHBiobaseBiocBaseUtilsBiocGenericsBiocManagerBiocParallelbitopsbslibcachemcaToolscliclueclustercodetoolscolorspacecpp11crayoncrosstalkcurldata.tableDelayedArraydigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachformatRfsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegplotsgtablegtoolshighrhtmltoolshtmlwidgetshttrigraphimputeIRangesisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglambda.rlaterlatticelazyevallifecyclelimmamagrittrMALDIquantMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeMsCoreUtilsMSnbaseMultiAssayExperimentmunsellmzIDmzRncdf4nlmeopensslpcaMethodspillarpkgconfigplotlyplyrpreprocessCorepromisesProtGenericsPSMatchpurrrQFeaturesR6rappdirsRColorBrewerRcppreshape2Rhdf5librlangrmarkdownS4ArraysS4VectorssassscalessnowSparseArraystatmodstringistringrSummarizedExperimentsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsviridisLitevsnwithrxfunXMLXVectoryamlzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Exploratory Data Analysis of label-free LC-MS/MS spectral counts | msmsEDA-package msmsEDA |
Batch effects correction | batch.neutralize |
Summary of statistics of spectral counts by sample in the dataset | count.stats |
Hierarchical clustering on an spectral counts matrix. | counts.hc |
Heatmap of an spectral counts matrix. | counts.heatmap |
Principal components analysis of an spectral counts matrix. | counts.pca |
Residual dispersion estimates | disp.estimates |
Flag proteins with a minimum signal and/or sufficient dispersion. | filter.flags |
Gene symbols associated to protein accessions | gene.table |
LC-MS/MS dataset | msms.dataset |
Spectral counts matrix normalization | norm.counts |
Accessions and gene symbols | pnms |
Spectral counts matrix pre-processing | pp.msms.data |
Set of SpC barplots by sample | spc.barplots |
Set of SpC boxplots by sample | spc.boxplots |
SpC density plots of a SpC matrix | spc.densityplots |
Scatterplot of SpC means comparing two conditions | spc.scatterplot |