Package: missMethyl 1.41.0
Belinda Phipson
missMethyl: Analysing Illumina HumanMethylation BeadChip Data
Normalisation, testing for differential variability and differential methylation and gene set testing for data from Illumina's Infinium HumanMethylation arrays. The normalisation procedure is subset-quantile within-array normalisation (SWAN), which allows Infinium I and II type probes on a single array to be normalised together. The test for differential variability is based on an empirical Bayes version of Levene's test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes.
Authors:
missMethyl_1.41.0.tar.gz
missMethyl_1.41.0.zip(r-4.5)missMethyl_1.41.0.zip(r-4.4)
missMethyl_1.41.0.tgz(r-4.4-any)
missMethyl_1.41.0.tar.gz(r-4.5-noble)missMethyl_1.41.0.tar.gz(r-4.4-noble)
missMethyl_1.41.0.tgz(r-4.4-emscripten)
missMethyl.pdf |missMethyl.html✨
missMethyl/json (API)
NEWS
# Install 'missMethyl' in R: |
install.packages('missMethyl', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:missMethyl-1.41.0(bioc 3.21)missMethyl-1.40.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
normalizationdnamethylationmethylationarraygenomicvariationgeneticvariabilitydifferentialmethylationgenesetenrichment
Last updated 3 months agofrom:9006ed418b. Checks:1 OK, 4 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 29 2024 |
R-4.5-win | WARNING | Dec 31 2024 |
R-4.5-linux | WARNING | Dec 29 2024 |
R-4.4-win | WARNING | Dec 31 2024 |
R-4.4-mac | WARNING | Dec 29 2024 |
Exports:contrasts.varFitdensityByProbeTypegetAdjgetINCsgetLeveneResidualsgetMappedEntrezIDsgomethgoregiongsamethgsaregiongsaseqRUVadjRUVfitSWANtopGSAtopRUVtopVarvarFit
Dependencies:abindannotateAnnotationDbiaskpassbase64beanplotBHBiasedUrnBiobaseBiocGenericsBiocIOBiocParallelBiostringsbitbit64bitopsblobbumphuntercachemclicliprcodetoolscolorspacecpp11crayoncurldata.tableDBIDelayedArrayDelayedMatrixStatsdigestdoRNGdplyrfansifarverfastmapFDb.InfiniumMethylation.hg19foreachformatRfutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicFeaturesGenomicRangesGEOqueryggplot2glueGO.dbgridExtragtableHDF5Arrayhmshttrhttr2IlluminaHumanMethylation450kanno.ilmn12.hg19IlluminaHumanMethylation450kmanifestIlluminaHumanMethylationEPICanno.ilm10b4.hg19IlluminaHumanMethylationEPICmanifestIlluminaHumanMethylationEPICv2anno.20a1.hg38IlluminaHumanMethylationEPICv2manifestilluminaioIRangesisobanditeratorsjsonliteKEGGRESTlabelinglambda.rlatticelifecyclelimmalocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemethylumimgcvmimeminfimulttestmunsellnlmenor1mixopensslorg.Hs.eg.dbpillarpkgconfigplogrplyrpngpreprocessCoreprettyunitsprogresspurrrquadprogR.methodsS3R.ooR.utilsR6rappdirsRColorBrewerRcppRCurlreadrrentrezreshapereshape2restfulrrhdf5rhdf5filtersRhdf5libRhtslibrjsonrlangrngtoolsRsamtoolsRSQLitertracklayerruvrvestS4ArraysS4VectorsscalesscrimeselectrsiggenessnowSparseArraysparseMatrixStatsstatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectTxDb.Hsapiens.UCSC.hg19.knownGenetzdbUCSC.utilsutf8vctrsviridisLitevroomwithrXMLxml2xtableXVectoryamlzlibbioc