Package: iasva 1.25.0

Donghyung Lee

iasva: Iteratively Adjusted Surrogate Variable Analysis

Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) is a statistical framework to uncover hidden sources of variation even when these sources are correlated. IA-SVA provides a flexible methodology to i) identify a hidden factor for unwanted heterogeneity while adjusting for all known factors; ii) test the significance of the putative hidden factor for explaining the unmodeled variation in the data; and iii), if significant, use the estimated factor as an additional known factor in the next iteration to uncover further hidden factors.

Authors:Donghyung Lee [aut, cre], Anthony Cheng [aut], Nathan Lawlor [aut], Duygu Ucar [aut]

iasva_1.25.0.tar.gz
iasva_1.25.0.zip(r-4.5)iasva_1.25.0.zip(r-4.4)iasva_1.25.0.zip(r-4.3)
iasva_1.25.0.tgz(r-4.4-any)iasva_1.25.0.tgz(r-4.3-any)
iasva_1.25.0.tar.gz(r-4.5-noble)iasva_1.25.0.tar.gz(r-4.4-noble)
iasva_1.25.0.tgz(r-4.4-emscripten)iasva_1.25.0.tgz(r-4.3-emscripten)
iasva.pdf |iasva.html
iasva/json (API)
NEWS

# Install 'iasva' in R:
install.packages('iasva', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On BioConductor:iasva-1.23.0(bioc 3.20)iasva-1.22.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

preprocessingqualitycontrolbatcheffectrnaseqsoftwarestatisticalmethodfeatureextractionimmunooncology

4.62 score 42 scripts 179 downloads 1 mentions 4 exports 39 dependencies

Last updated 23 days agofrom:f02ee47517. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:fast_iasvafind_markersiasvastudy_R2

Dependencies:abindaskpassBHBiobaseBiocGenericsBiocParallelclustercodetoolscpp11crayoncurlDelayedArrayformatRfutile.loggerfutile.optionsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesirlbajsonlitelambda.rlatticeMatrixMatrixGenericsmatrixStatsmimeopensslR6S4ArraysS4VectorssnowSparseArraySummarizedExperimentsysUCSC.utilsXVectorzlibbioc

Detecting hidden heterogeneity in single cell RNA-Seq data

Rendered fromdetecting_hidden_heterogeneity_iasvaV0.95.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2018-05-09
Started: 2017-08-15