Package: iGC 1.37.0

Liang-Bo Wang

iGC: An integrated analysis package of Gene expression and Copy number alteration

This package is intended to identify differentially expressed genes driven by Copy Number Alterations from samples with both gene expression and CNA data.

Authors:Yi-Pin Lai [aut], Liang-Bo Wang [aut, cre], Tzu-Pin Lu [aut], Eric Y. Chuang [aut]

iGC_1.37.0.tar.gz
iGC_1.37.0.zip(r-4.5)iGC_1.37.0.zip(r-4.4)iGC_1.37.0.zip(r-4.3)
iGC_1.37.0.tgz(r-4.4-any)iGC_1.37.0.tgz(r-4.3-any)
iGC_1.37.0.tar.gz(r-4.5-noble)iGC_1.37.0.tar.gz(r-4.4-noble)
iGC_1.37.0.tgz(r-4.4-emscripten)iGC_1.37.0.tgz(r-4.3-emscripten)
iGC.pdf |iGC.html
iGC/json (API)
NEWS

# Install 'iGC' in R:
install.packages('iGC', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ccwang002/igc/issues

Datasets:

On BioConductor:iGC-1.37.0(bioc 3.21)iGC-1.36.0(bioc 3.20)

softwarebiological questiondifferentialexpressiongenomicvariationassaydomaincopynumbervariationgeneexpressionresearchfieldgeneticstechnologymicroarraysequencingworkflowstepmultiplecomparison

3.78 score 1 stars 1 scripts 208 downloads 3 mentions 5 exports 3 dependencies

Last updated 2 months agofrom:9bbfe28571. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-winNOTENov 29 2024
R-4.5-linuxNOTENov 29 2024
R-4.4-winNOTENov 29 2024
R-4.4-macNOTENov 29 2024
R-4.3-winNOTENov 29 2024
R-4.3-macNOTENov 29 2024

Exports:create_gene_cnacreate_gene_expcreate_sample_descdirect_gene_cnafind_cna_driven_gene

Dependencies:data.tableplyrRcpp

Introduction to iGC

Rendered fromIntroduction.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2018-08-30
Started: 2015-09-14