Package: iChip 1.61.0

Qianxing Mo

iChip: Bayesian Modeling of ChIP-chip Data Through Hidden Ising Models

Hidden Ising models are implemented to identify enriched genomic regions in ChIP-chip data. They can be used to analyze the data from multiple platforms (e.g., Affymetrix, Agilent, and NimbleGen), and the data with single to multiple replicates.

Authors:Qianxing Mo

iChip_1.61.0.tar.gz
iChip_1.61.0.zip(r-4.5)iChip_1.61.0.zip(r-4.4)iChip_1.61.0.zip(r-4.3)
iChip_1.61.0.tgz(r-4.5-x86_64)iChip_1.61.0.tgz(r-4.5-arm64)iChip_1.61.0.tgz(r-4.4-x86_64)iChip_1.61.0.tgz(r-4.4-arm64)iChip_1.61.0.tgz(r-4.3-x86_64)iChip_1.61.0.tgz(r-4.3-arm64)
iChip_1.61.0.tar.gz(r-4.5-noble)iChip_1.61.0.tar.gz(r-4.4-noble)
iChip_1.61.0.tgz(r-4.4-emscripten)iChip_1.61.0.tgz(r-4.3-emscripten)
iChip.pdf |iChip.html
iChip/json (API)

# Install 'iChip' in R:
install.packages('iChip', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On BioConductor:iChip-1.61.0(bioc 3.21)iChip-1.60.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

chipchiponechannelagilentchipmicroarray

4.15 score 3 scripts 266 downloads 7 mentions 4 exports 2 dependencies

Last updated 4 months agofrom:c3b6d48307. Checks:1 OK, 10 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 28 2025
R-4.5-win-x86_64WARNINGJan 28 2025
R-4.5-mac-x86_64WARNINGJan 28 2025
R-4.5-mac-aarch64WARNINGJan 28 2025
R-4.5-linux-x86_64WARNINGJan 28 2025
R-4.4-win-x86_64WARNINGJan 28 2025
R-4.4-mac-x86_64WARNINGJan 28 2025
R-4.4-mac-aarch64WARNINGJan 28 2025
R-4.3-win-x86_64WARNINGJan 28 2025
R-4.3-mac-x86_64WARNINGJan 28 2025
R-4.3-mac-aarch64WARNINGJan 28 2025

Exports:enrichregiChip1iChip2lmtstat

Dependencies:limmastatmod

iChip

Rendered fromiChip.Rnwusingutils::Sweaveon Jan 28 2025.

Last update: 2018-09-26
Started: 2013-11-01