Package: iBBiG 1.51.0

Aedin Culhane

iBBiG: Iterative Binary Biclustering of Genesets

iBBiG is a bi-clustering algorithm which is optimizes for binary data analysis. We apply it to meta-gene set analysis of large numbers of gene expression datasets. The iterative algorithm extracts groups of phenotypes from multiple studies that are associated with similar gene sets. iBBiG does not require prior knowledge of the number or scale of clusters and allows discovery of clusters with diverse sizes

Authors:Daniel Gusenleitner, Aedin Culhane

iBBiG_1.51.0.tar.gz
iBBiG_1.51.0.zip(r-4.5)iBBiG_1.51.0.zip(r-4.4)iBBiG_1.51.0.zip(r-4.3)
iBBiG_1.51.0.tgz(r-4.4-x86_64)iBBiG_1.51.0.tgz(r-4.4-arm64)iBBiG_1.51.0.tgz(r-4.3-x86_64)iBBiG_1.51.0.tgz(r-4.3-arm64)
iBBiG_1.51.0.tar.gz(r-4.5-noble)iBBiG_1.51.0.tar.gz(r-4.4-noble)
iBBiG_1.51.0.tgz(r-4.4-emscripten)iBBiG_1.51.0.tgz(r-4.3-emscripten)
iBBiG.pdf |iBBiG.html
iBBiG/json (API)

# Install 'iBBiG' in R:
install.packages('iBBiG', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On BioConductor:iBBiG-1.49.0(bioc 3.20)iBBiG-1.48.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

clusteringannotationgenesetenrichment

4.56 score 2 packages 3 scripts 216 downloads 3 mentions 16 exports 47 dependencies

Last updated 23 days agofrom:370a007699. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-win-x86_64NOTEOct 30 2024
R-4.5-linux-x86_64NOTEOct 30 2024
R-4.4-win-x86_64NOTEOct 30 2024
R-4.4-mac-x86_64NOTEOct 30 2024
R-4.4-mac-aarch64NOTEOct 30 2024
R-4.3-win-x86_64NOTEOct 30 2024
R-4.3-mac-x86_64NOTEOct 30 2024
R-4.3-mac-aarch64NOTEOct 30 2024

Exports:analyzeClustClusterscoresiBBiGinfoJIdistmakeArtificialmakeSimDesignMatNumberNumberxColParametersplotRowScorexNumberRowxNumberSeeddatashowsummary

Dependencies:additivityTestsade4biclustclassclicolorspacecpp11dplyrfansifarverflexclustgenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmodeltoolsmunsellnlmepillarpixmappkgconfigpurrrR6RColorBrewerRcppRcppArmadillorlangscalesspstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxtable

iBBiG User Manual

Rendered fromtutorial.Rnwusingutils::Sweaveon Oct 30 2024.

Last update: 2013-11-01
Started: 2013-11-01

Readme and manuals

Help Manual

Help pageTopics
iBBiG performs bi-clustering of binary matricesiBBiG-package
Iterative Binary Bi-Clustering for GeneSetsiBBiG
Class '"iBBiG"'analyzeClust analyzeClust,Biclust,iBBiG-method analyzeClust,iBBiG,iBBiG-method analyzeClust,list,iBBiG-method Clusterscores Clusterscores,iBBiG-method Clusterscores<- iBBiG-class info info,iBBiG-method info<- JIdist JIdist,Biclust,Biclust-method JIdist,Biclust,iBBiG-method JIdist,iBBiG,iBBiG-method Number Number,iBBiG-method Number<- NumberxCol NumberxCol,iBBiG-method NumberxCol<- Parameters Parameters,iBBiG-method Parameters<- plot,iBBiG,ANY-method RowScorexNumber RowScorexNumber,iBBiG-method RowScorexNumber<- RowxNumber RowxNumber,iBBiG-method RowxNumber<- Seeddata Seeddata,iBBiG-method Seeddata<- show,iBBiG-method summary,iBBiG-method [,iBBiG-method
Create a 400x400 simulated binary matrix for testing iBBiG and other binary biclustering methodsaddSignal makeArtificial makeSimDesignMat