Package: iBBiG 1.51.0

Aedin Culhane

iBBiG: Iterative Binary Biclustering of Genesets

iBBiG is a bi-clustering algorithm which is optimizes for binary data analysis. We apply it to meta-gene set analysis of large numbers of gene expression datasets. The iterative algorithm extracts groups of phenotypes from multiple studies that are associated with similar gene sets. iBBiG does not require prior knowledge of the number or scale of clusters and allows discovery of clusters with diverse sizes

Authors:Daniel Gusenleitner, Aedin Culhane

iBBiG_1.51.0.tar.gz
iBBiG_1.51.0.zip(r-4.5)iBBiG_1.51.0.zip(r-4.4)iBBiG_1.51.0.zip(r-4.3)
iBBiG_1.51.0.tgz(r-4.5-x86_64)iBBiG_1.51.0.tgz(r-4.5-arm64)iBBiG_1.51.0.tgz(r-4.4-x86_64)iBBiG_1.51.0.tgz(r-4.4-arm64)iBBiG_1.51.0.tgz(r-4.3-x86_64)iBBiG_1.51.0.tgz(r-4.3-arm64)
iBBiG_1.51.0.tar.gz(r-4.5-noble)iBBiG_1.51.0.tar.gz(r-4.4-noble)
iBBiG_1.51.0.tgz(r-4.4-emscripten)iBBiG_1.51.0.tgz(r-4.3-emscripten)
iBBiG.pdf |iBBiG.html
iBBiG/json (API)

# Install 'iBBiG' in R:
install.packages('iBBiG', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

On BioConductor:iBBiG-1.51.0(bioc 3.21)iBBiG-1.50.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

clusteringannotationgenesetenrichment

4.56 score 2 packages 3 scripts 264 downloads 3 mentions 16 exports 47 dependencies

Last updated 4 months agofrom:370a007699. Checks:1 OK, 10 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 28 2025
R-4.5-win-x86_64NOTEJan 28 2025
R-4.5-mac-x86_64NOTEJan 28 2025
R-4.5-mac-aarch64NOTEJan 28 2025
R-4.5-linux-x86_64NOTEJan 28 2025
R-4.4-win-x86_64NOTEJan 28 2025
R-4.4-mac-x86_64NOTEJan 28 2025
R-4.4-mac-aarch64NOTEJan 28 2025
R-4.3-win-x86_64NOTEJan 28 2025
R-4.3-mac-x86_64NOTEJan 28 2025
R-4.3-mac-aarch64NOTEJan 28 2025

Exports:analyzeClustClusterscoresiBBiGinfoJIdistmakeArtificialmakeSimDesignMatNumberNumberxColParametersplotRowScorexNumberRowxNumberSeeddatashowsummary

Dependencies:additivityTestsade4biclustclassclicolorspacecpp11dplyrfansifarverflexclustgenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmodeltoolsmunsellnlmepillarpixmappkgconfigpurrrR6RColorBrewerRcppRcppArmadillorlangscalesspstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxtable

iBBiG User Manual

Rendered fromtutorial.Rnwusingutils::Sweaveon Jan 28 2025.

Last update: 2013-11-01
Started: 2013-11-01

Readme and manuals

Help Manual

Help pageTopics
iBBiG performs bi-clustering of binary matricesiBBiG-package
Iterative Binary Bi-Clustering for GeneSetsiBBiG
Class '"iBBiG"'analyzeClust analyzeClust,Biclust,iBBiG-method analyzeClust,iBBiG,iBBiG-method analyzeClust,list,iBBiG-method Clusterscores Clusterscores,iBBiG-method Clusterscores<- iBBiG-class info info,iBBiG-method info<- JIdist JIdist,Biclust,Biclust-method JIdist,Biclust,iBBiG-method JIdist,iBBiG,iBBiG-method Number Number,iBBiG-method Number<- NumberxCol NumberxCol,iBBiG-method NumberxCol<- Parameters Parameters,iBBiG-method Parameters<- plot,iBBiG,ANY-method RowScorexNumber RowScorexNumber,iBBiG-method RowScorexNumber<- RowxNumber RowxNumber,iBBiG-method RowxNumber<- Seeddata Seeddata,iBBiG-method Seeddata<- show,iBBiG-method summary,iBBiG-method [,iBBiG-method
Create a 400x400 simulated binary matrix for testing iBBiG and other binary biclustering methodsaddSignal makeArtificial makeSimDesignMat