Package: gaga 2.53.0
gaga: GaGa hierarchical model for high-throughput data analysis
Implements the GaGa model for high-throughput data analysis, including differential expression analysis, supervised gene clustering and classification. Additionally, it performs sequential sample size calculations using the GaGa and LNNGV models (the latter from EBarrays package).
Authors:
gaga_2.53.0.tar.gz
gaga_2.53.0.zip(r-4.5)gaga_2.53.0.zip(r-4.4)gaga_2.53.0.zip(r-4.3)
gaga_2.53.0.tgz(r-4.5-x86_64)gaga_2.53.0.tgz(r-4.5-arm64)gaga_2.53.0.tgz(r-4.4-x86_64)gaga_2.53.0.tgz(r-4.4-arm64)gaga_2.53.0.tgz(r-4.3-x86_64)gaga_2.53.0.tgz(r-4.3-arm64)
gaga_2.53.0.tar.gz(r-4.5-noble)gaga_2.53.0.tar.gz(r-4.4-noble)
gaga_2.53.0.tgz(r-4.4-emscripten)gaga_2.53.0.tgz(r-4.3-emscripten)
gaga.pdf |gaga.html✨
gaga/json (API)
# Install 'gaga' in R: |
install.packages('gaga', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:gaga-2.53.0(bioc 3.21)gaga-2.52.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
immunooncologyonechannelmassspectrometrymultiplecomparisondifferentialexpressionclassification
Last updated 4 months agofrom:71fadde79f. Checks:1 OK, 1 NOTE, 9 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 29 2025 |
R-4.5-win-x86_64 | WARNING | Jan 29 2025 |
R-4.5-mac-x86_64 | WARNING | Jan 29 2025 |
R-4.5-mac-aarch64 | WARNING | Jan 29 2025 |
R-4.5-linux-x86_64 | NOTE | Jan 29 2025 |
R-4.4-win-x86_64 | WARNING | Jan 29 2025 |
R-4.4-mac-x86_64 | WARNING | Jan 29 2025 |
R-4.4-mac-aarch64 | WARNING | Jan 29 2025 |
R-4.3-win-x86_64 | WARNING | Jan 29 2025 |
R-4.3-mac-x86_64 | WARNING | Jan 29 2025 |
R-4.3-mac-aarch64 | WARNING | Jan 29 2025 |
Exports:adjustfitNNbuildPatternscheckfitclasspreddcgammafindgenesfitGGfitNNfitNNSingleHypforwsimDiffExprgeneclusgetparmcgammaparestplotForwSimposmeansGGpowclasspredpowfindgenesrcgammaseqBoundariesGridsimGGsimLNNsimnewsamplessimNN
Dependencies:BiobaseBiocGenericsclustercodaEBarraysgenericslatticeMatrixmgcvnlme