Package: fmrs 1.17.0

Farhad Shokoohi

fmrs: Variable Selection in Finite Mixture of AFT Regression and FMR Models

The package obtains parameter estimation, i.e., maximum likelihood estimators (MLE), via the Expectation-Maximization (EM) algorithm for the Finite Mixture of Regression (FMR) models with Normal distribution, and MLE for the Finite Mixture of Accelerated Failure Time Regression (FMAFTR) subject to right censoring with Log-Normal and Weibull distributions via the EM algorithm and the Newton-Raphson algorithm (for Weibull distribution). More importantly, the package obtains the maximum penalized likelihood (MPLE) for both FMR and FMAFTR models (collectively called FMRs). A component-wise tuning parameter selection based on a component-wise BIC is implemented in the package. Furthermore, this package provides Ridge Regression and Elastic Net.

Authors:Farhad Shokoohi [aut, cre]

fmrs_1.17.0.tar.gz
fmrs_1.17.0.zip(r-4.5)fmrs_1.17.0.zip(r-4.4)fmrs_1.17.0.zip(r-4.3)
fmrs_1.17.0.tgz(r-4.4-x86_64)fmrs_1.17.0.tgz(r-4.4-arm64)fmrs_1.17.0.tgz(r-4.3-x86_64)fmrs_1.17.0.tgz(r-4.3-arm64)
fmrs_1.17.0.tar.gz(r-4.5-noble)fmrs_1.17.0.tar.gz(r-4.4-noble)
fmrs_1.17.0.tgz(r-4.4-emscripten)fmrs_1.17.0.tgz(r-4.3-emscripten)
fmrs.pdf |fmrs.html
fmrs/json (API)
NEWS

# Install 'fmrs' in R:
install.packages('fmrs', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/shokoohi/fmrs/issues

On BioConductor:fmrs-1.15.0(bioc 3.20)fmrs-1.14.0(bioc 3.19)

survivalregressiondimensionreduction

5.00 score 3 stars 1 packages 55 scripts 195 downloads 1 mentions 17 exports 3 dependencies

Last updated 23 days agofrom:6030d8eb5b. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-win-x86_64OKOct 30 2024
R-4.5-linux-x86_64OKOct 30 2024
R-4.4-win-x86_64OKOct 30 2024
R-4.4-mac-x86_64OKOct 30 2024
R-4.4-mac-aarch64OKOct 30 2024
R-4.3-win-x86_64OKOct 30 2024
R-4.3-mac-x86_64OKOct 30 2024
R-4.3-mac-aarch64OKOct 30 2024

Exports:BICcoefficientsdispersionfittedfmrs.gendatafmrs.mlefmrs.tunselfmrs.varselfmrstunparlogLikmixPropncompncovnobsresidualssummaryweights

Dependencies:latticeMatrixsurvival

Using fmrs package

Rendered fromusingfmrs.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2022-04-20
Started: 2016-03-27

Readme and manuals

Help Manual

Help pageTopics
Variable Selection in Finite Mixture of AFT Regression and FMR Modelsfmrs-package fmrs
BIC methodBIC BIC,BIC-method BIC,fmrsfit-method
coefficients methodcoefficients coefficients,coefficients-method coefficients,fmrsfit-method
dispersion methoddispersion dispersion,dispersion-method dispersion,fmrsfit-method
fitted methodfitted fitted,fitted-method fitted,fmrsfit-method
fmrs.gendata methodfmrs.gendata fmrs.gendata,ANY-method fmrs.gendata-method
fmrs.mle methodfmrs.mle fmrs.mle,ANY-method fmrs.mle-method
fmrs.tunsel methodfmrs.tunsel fmrs.tunsel,ANY-method fmrs.tunsel-method
fmrs.varsel methodfmrs.varsel fmrs.varsel,ANY-method fmrs.varsel-method
An S4 class to represent a fitted FMRs modelfmrsfit-class frmsfit
An S4 class to represent estimated optimal lambdasfmrstunpar fmrstunpar-class
logLik methodlogLik logLik,fmrsfit-method logLik,logLik-method
mixProp methodmixProp mixProp,fmrsfit-method mixProp,mixProp-method
ncomp methodncomp ncomp,fmrsfit-method ncomp,ncomp-method
ncov methodncov ncov,fmrsfit-method ncov,ncov-method
nobs methodnobs nobs,fmrsfit-method nobs,nobs-method
residuals methodresiduals residuals,fmrsfit-method residuals,residuals-method
summary methodsummary summary,fmrsfit-method summary,fmrstunpar-method summary,summary-method
weights methodweights weights,fmrsfit-method weights,weights-method