Package: fmrs 1.17.0
fmrs: Variable Selection in Finite Mixture of AFT Regression and FMR Models
The package obtains parameter estimation, i.e., maximum likelihood estimators (MLE), via the Expectation-Maximization (EM) algorithm for the Finite Mixture of Regression (FMR) models with Normal distribution, and MLE for the Finite Mixture of Accelerated Failure Time Regression (FMAFTR) subject to right censoring with Log-Normal and Weibull distributions via the EM algorithm and the Newton-Raphson algorithm (for Weibull distribution). More importantly, the package obtains the maximum penalized likelihood (MPLE) for both FMR and FMAFTR models (collectively called FMRs). A component-wise tuning parameter selection based on a component-wise BIC is implemented in the package. Furthermore, this package provides Ridge Regression and Elastic Net.
Authors:
fmrs_1.17.0.tar.gz
fmrs_1.17.0.zip(r-4.5)fmrs_1.17.0.zip(r-4.4)fmrs_1.17.0.zip(r-4.3)
fmrs_1.17.0.tgz(r-4.4-x86_64)fmrs_1.17.0.tgz(r-4.4-arm64)fmrs_1.17.0.tgz(r-4.3-x86_64)fmrs_1.17.0.tgz(r-4.3-arm64)
fmrs_1.17.0.tar.gz(r-4.5-noble)fmrs_1.17.0.tar.gz(r-4.4-noble)
fmrs_1.17.0.tgz(r-4.4-emscripten)fmrs_1.17.0.tgz(r-4.3-emscripten)
fmrs.pdf |fmrs.html✨
fmrs/json (API)
NEWS
# Install 'fmrs' in R: |
install.packages('fmrs', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/shokoohi/fmrs/issues
On BioConductor:fmrs-1.17.0(bioc 3.21)fmrs-1.16.0(bioc 3.20)
survivalregressiondimensionreduction
Last updated 2 months agofrom:6030d8eb5b. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 29 2024 |
R-4.5-win-x86_64 | OK | Nov 29 2024 |
R-4.5-linux-x86_64 | OK | Nov 29 2024 |
R-4.4-win-x86_64 | OK | Nov 29 2024 |
R-4.4-mac-x86_64 | OK | Nov 29 2024 |
R-4.4-mac-aarch64 | OK | Nov 29 2024 |
R-4.3-win-x86_64 | OK | Nov 29 2024 |
R-4.3-mac-x86_64 | OK | Nov 29 2024 |
R-4.3-mac-aarch64 | OK | Nov 29 2024 |
Exports:BICcoefficientsdispersionfittedfmrs.gendatafmrs.mlefmrs.tunselfmrs.varselfmrstunparlogLikmixPropncompncovnobsresidualssummaryweights
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Variable Selection in Finite Mixture of AFT Regression and FMR Models | fmrs-package fmrs |
BIC method | BIC BIC,BIC-method BIC,fmrsfit-method |
coefficients method | coefficients coefficients,coefficients-method coefficients,fmrsfit-method |
dispersion method | dispersion dispersion,dispersion-method dispersion,fmrsfit-method |
fitted method | fitted fitted,fitted-method fitted,fmrsfit-method |
fmrs.gendata method | fmrs.gendata fmrs.gendata,ANY-method fmrs.gendata-method |
fmrs.mle method | fmrs.mle fmrs.mle,ANY-method fmrs.mle-method |
fmrs.tunsel method | fmrs.tunsel fmrs.tunsel,ANY-method fmrs.tunsel-method |
fmrs.varsel method | fmrs.varsel fmrs.varsel,ANY-method fmrs.varsel-method |
An S4 class to represent a fitted FMRs model | fmrsfit-class frmsfit |
An S4 class to represent estimated optimal lambdas | fmrstunpar fmrstunpar-class |
logLik method | logLik logLik,fmrsfit-method logLik,logLik-method |
mixProp method | mixProp mixProp,fmrsfit-method mixProp,mixProp-method |
ncomp method | ncomp ncomp,fmrsfit-method ncomp,ncomp-method |
ncov method | ncov ncov,fmrsfit-method ncov,ncov-method |
nobs method | nobs nobs,fmrsfit-method nobs,nobs-method |
residuals method | residuals residuals,fmrsfit-method residuals,residuals-method |
summary method | summary summary,fmrsfit-method summary,fmrstunpar-method summary,summary-method |
weights method | weights weights,fmrsfit-method weights,weights-method |