Package: epigraHMM 1.15.0
epigraHMM: Epigenomic R-based analysis with hidden Markov models
epigraHMM provides a set of tools for the analysis of epigenomic data based on hidden Markov Models. It contains two separate peak callers, one for consensus peaks from biological or technical replicates, and one for differential peaks from multi-replicate multi-condition experiments. In differential peak calling, epigraHMM provides window-specific posterior probabilities associated with every possible combinatorial pattern of read enrichment across conditions.
Authors:
epigraHMM_1.15.0.tar.gz
epigraHMM_1.15.0.zip(r-4.5)epigraHMM_1.15.0.zip(r-4.4)epigraHMM_1.15.0.zip(r-4.3)
epigraHMM_1.15.0.tgz(r-4.4-x86_64)epigraHMM_1.15.0.tgz(r-4.4-arm64)epigraHMM_1.15.0.tgz(r-4.3-x86_64)epigraHMM_1.15.0.tgz(r-4.3-arm64)
epigraHMM_1.15.0.tar.gz(r-4.5-noble)epigraHMM_1.15.0.tar.gz(r-4.4-noble)
epigraHMM.pdf |epigraHMM.html✨
epigraHMM/json (API)
NEWS
# Install 'epigraHMM' in R: |
install.packages('epigraHMM', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- helas3 - ENCODE ChIP-seq broad data from Helas3 cell line
On BioConductor:epigraHMM-1.15.0(bioc 3.21)epigraHMM-1.14.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
chipseqatacseqdnaseseqhiddenmarkovmodelepigeneticszlibopenblascppopenmp
Last updated 2 months agofrom:524cd3d55d. Checks:1 OK, 8 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 29 2024 |
R-4.5-win-x86_64 | NOTE | Dec 31 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 29 2024 |
R-4.4-win-x86_64 | NOTE | Dec 31 2024 |
R-4.4-mac-x86_64 | NOTE | Dec 29 2024 |
R-4.4-mac-aarch64 | NOTE | Dec 29 2024 |
R-4.3-win-x86_64 | NOTE | Dec 31 2024 |
R-4.3-mac-x86_64 | NOTE | Dec 29 2024 |
R-4.3-mac-aarch64 | NOTE | Dec 29 2024 |
Exports:addOffsetscallPatternscallPeakscleanCountscontrolEMepigraHMMepigraHMMDataSetFromBamepigraHMMDataSetFromMatrixestimateTransitionProbexpStepinfoinitializermaxStepProbnormalizeCountsplotCountsplotPatternssegmentGenomesimulateMarkovChain
Dependencies:abindaskpassbackportsbamsignalsBHBiobaseBiocGenericsBiocIOBiocParallelBiostringsbitopsbootbroomBSgenomecarcarDataclicodetoolscolorspacecorrplotcowplotcpp11crayoncsawcurldata.tableDelayedArrayDerivdoBydplyredgeRfansifarverformatRFormulafutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicRangesggplot2ggpubrggrepelggsciggsignifglueGreyListChIPgridExtragtablehttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclelimmalme4locfitmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmetapodmgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestpheatmappillarpkgconfigpolynompurrrquantregR6RColorBrewerRcppRcppArmadilloRcppEigenRCurlrestfulrrhdf5rhdf5filtersRhdf5libRhtslibrjsonrlangRsamtoolsrstatixrtracklayerS4ArraysS4VectorsscalessnowSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectUCSC.utilsutf8vctrsviridisLitewithrXMLXVectoryamlzlibbioc