Package: deltaCaptureC 1.21.0

Michael Shapiro

deltaCaptureC: This Package Discovers Meso-scale Chromatin Remodeling from 3C Data

This package discovers meso-scale chromatin remodelling from 3C data. 3C data is local in nature. It givens interaction counts between restriction enzyme digestion fragments and a preferred 'viewpoint' region. By binning this data and using permutation testing, this package can test whether there are statistically significant changes in the interaction counts between the data from two cell types or two treatments.

Authors:Michael Shapiro [aut, cre]

deltaCaptureC_1.21.0.tar.gz
deltaCaptureC_1.21.0.zip(r-4.5)deltaCaptureC_1.21.0.zip(r-4.4)deltaCaptureC_1.21.0.zip(r-4.3)
deltaCaptureC_1.21.0.tgz(r-4.4-any)deltaCaptureC_1.21.0.tgz(r-4.3-any)
deltaCaptureC_1.21.0.tar.gz(r-4.5-noble)deltaCaptureC_1.21.0.tar.gz(r-4.4-noble)
deltaCaptureC_1.21.0.tgz(r-4.4-emscripten)deltaCaptureC_1.21.0.tgz(r-4.3-emscripten)
deltaCaptureC.pdf |deltaCaptureC.html
deltaCaptureC/json (API)

# Install 'deltaCaptureC' in R:
install.packages('deltaCaptureC', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:deltaCaptureC-1.21.0(bioc 3.21)deltaCaptureC-1.20.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

biologicalquestionstatisticalmethod

3.48 score 1 scripts 170 downloads 17 exports 67 dependencies

Last updated 3 months agofrom:10a66b36c0. Checks:1 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 02 2025
R-4.5-winNOTEJan 02 2025
R-4.5-linuxNOTEJan 02 2025
R-4.4-winNOTEJan 02 2025
R-4.4-macNOTEJan 02 2025
R-4.3-winNOTEJan 02 2025
R-4.3-macNOTEJan 02 2025

Exports:binSummarizedExperimentdownshiftDFtoMatrixgeneratePermutationgetDeltaSEgetLopsidednessgetMeanNormalizedCountsSEgetNormalizedCountsSEgetOverlapWeightsgetPValueCutoffgetRunAndLopsidednessStatisticsgetRunStatisticsDistgetRunTotalsgetSignificantRegionsgetSizeFactorsDFgetSizeFactorsSEplotSignificantRegionsrebinToMultiple

Dependencies:abindaskpassBHBiobaseBiocGenericsBiocParallelclicodetoolscolorspacecpp11crayoncurlDelayedArrayDESeq2fansifarverformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclelocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemunsellnlmeopensslpillarpkgconfigR6RColorBrewerRcppRcppArmadillorlangS4ArraysS4VectorsscalessnowSparseArraySummarizedExperimentsystibbletictocUCSC.utilsutf8vctrsviridisLitewithrXVector

Delta Capure-C

Rendered fromdeltaCaptureC.Rmdusingknitr::rmarkdownon Jan 02 2025.

Last update: 2019-09-03
Started: 2019-04-23

Readme and manuals

Help Manual

Help pageTopics
A helper function for getRunTotals.getRunsAndTotals
Big bin sizebigBinSize
Plot of Binned Delta CountsbinnedDeltaPlot
Binned difference of mean capture-C counts between EScells and NeuronsbinnedDeltaSE
Binned Capture-C counts of EScells and NeuronsbinnedSummarizedExperiment
Bin a Summarized experiment into a set of bins given by a GRanges objectbinSummarizedExperiment
Difference of mean capture-C counts between EScells and NeuronsdeltaSE
Downshift from DF to matrixdownshiftDFtoMatrix
Generate permutation for permutation testinggeneratePermutation
Make delta summarized experiment:getDeltaSE
Get the lopsidedness statisticgetLopsidedness
Make mean treatment summarized experiment:getMeanNormalizedCountsSE
Get normalized countsgetNormalizedCountsSE
Get the binning factors for one set of GRanges into anothergetOverlapWeights
This function returns the significance levels for min, max, "abs" and lopsidedness.getPValueCutoff
Get the distribution of run and lopsidedness statisticsgetRunAndLopsidednessStatistics
This function is called by getRunsStatisticsDist on the individual elements of a list of scrambled runs.getRunStatistics
This takes a list of (scrambled) runs and returns their run statisticsgetRunStatisticsDist
Get the runs and their valuesgetRunTotals
Get ths significant regions from delta datagetSignificantRegions
Get the size factors for count normalizationgetSizeFactorsDF
Get the size factors for SummarizedExperimentgetSizeFactorsSE
Difference of mean capture-C counts between EScells and NeuronsminiDeltaSE
Capture-C counts of EScells and NeuronsminiSE
Capture-C counts of EScells and NeuronsminiSEDF
Number of permutations used in example permutation testing.numPermutations
This produces a plot of the region of interest showing regions of significance.plotSignificantRegions
Title for delta capture-C plotplotTitle
P-valuepValue
Rebin a SummarizedExperiment to a multiple of its bin widthrebinToMultiple
Region of interest surrounding the viewpointregionOfInterest
Type for testing significancesignificanceType
Regions of significant remodeling in example datasignificantRegions
A plot of the significant regions in the sample data.significantRegionsPlot
Small BinssmallBins
Small Bin SizesmallBinSize
A subset of miniDeltaSE.smallerDeltaSE
Small BinssmallSetOfSmallBins
Region surrounding the viewpointviewpointRegion
Weights example binsweightsExampleBins
Weights exampleweightsExampleGr