Package: corral 1.17.0
corral: Correspondence Analysis for Single Cell Data
Correspondence analysis (CA) is a matrix factorization method, and is similar to principal components analysis (PCA). Whereas PCA is designed for application to continuous, approximately normally distributed data, CA is appropriate for non-negative, count-based data that are in the same additive scale. The corral package implements CA for dimensionality reduction of a single matrix of single-cell data, as well as a multi-table adaptation of CA that leverages data-optimized scaling to align data generated from different sequencing platforms by projecting into a shared latent space. corral utilizes sparse matrices and a fast implementation of SVD, and can be called directly on Bioconductor objects (e.g., SingleCellExperiment) for easy pipeline integration. The package also includes additional options, including variations of CA to address overdispersion in count data (e.g., Freeman-Tukey chi-squared residual), as well as the option to apply CA-style processing to continuous data (e.g., proteomic TOF intensities) with the Hellinger distance adaptation of CA.
Authors:
corral_1.17.0.tar.gz
corral_1.17.0.zip(r-4.5)corral_1.17.0.zip(r-4.4)corral_1.17.0.zip(r-4.3)
corral_1.17.0.tgz(r-4.4-any)corral_1.17.0.tgz(r-4.3-any)
corral_1.17.0.tar.gz(r-4.5-noble)corral_1.17.0.tar.gz(r-4.4-noble)
corral_1.17.0.tgz(r-4.4-emscripten)corral_1.17.0.tgz(r-4.3-emscripten)
corral.pdf |corral.html✨
corral/json (API)
# Install 'corral' in R: |
install.packages('corral', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:corral-1.15.0(bioc 3.20)corral-1.14.0(bioc 3.19)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
batcheffectdimensionreductiongeneexpressionpreprocessingprincipalcomponentsequencingsinglecellsoftwarevisualization
Last updated 23 days agofrom:284ef14e5b. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | NOTE | Oct 30 2024 |
R-4.5-linux | NOTE | Oct 30 2024 |
R-4.4-win | NOTE | Oct 30 2024 |
R-4.4-mac | NOTE | Oct 31 2024 |
R-4.3-win | NOTE | Oct 30 2024 |
R-4.3-mac | NOTE | Oct 31 2024 |
Exports:add_embeddings2scelistall_arebiplot_corralcompsvdcorralcorral_matcorral_preproccorral_scecorralmcorralm_matlistcorralm_sceearthmover_distget_pct_var_exp_svdget_weightslist2matna2zeropairwise_rvplot_embeddingplot_embedding_scervscal_varscal_var_matsce2matlisttrim_matdistvar_stabilize
Dependencies:abindaskpassBiobaseBiocBaseUtilsBiocGenericsclicolorspacecpp11crayoncurldata.tableDelayedArraydichromatdplyrfansifarvergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggthemesgluegridExtragtablehttrIRangesirlbaisobandjsonlitelabelinglatticelifecyclemagrittrmapprojmapsMASSMatrixMatrixGenericsmatrixStatsmgcvmimeMultiAssayExperimentmunsellnlmeopensslpalspillarpkgconfigplyrpurrrR6RColorBrewerRcppRcppEigenreshape2rlangS4ArraysS4VectorsscalesSingleCellExperimentSparseArraystringistringrSummarizedExperimentsystibbletidyrtidyselecttransportUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc
Alignment & batch integration of single cell data with corralm
Rendered fromcorralm_alignment.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2021-11-09
Started: 2020-05-04
Dimension reduction of single cell data with corral
Rendered fromcorral_dimred.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-02-09
Started: 2020-05-04