Package: blacksheepr 1.21.0

RugglesLab

blacksheepr: Outlier Analysis for pairwise differential comparison

Blacksheep is a tool designed for outlier analysis in the context of pairwise comparisons in an effort to find distinguishing characteristics from two groups. This tool was designed to be applied for biological applications such as phosphoproteomics or transcriptomics, but it can be used for any data that can be represented by a 2D table, and has two sub populations within the table to compare.

Authors:MacIntosh Cornwell [aut], RugglesLab [cre]

blacksheepr_1.21.0.tar.gz
blacksheepr_1.21.0.zip(r-4.5)blacksheepr_1.21.0.zip(r-4.4)blacksheepr_1.21.0.zip(r-4.3)
blacksheepr_1.21.0.tgz(r-4.4-any)blacksheepr_1.21.0.tgz(r-4.3-any)
blacksheepr_1.21.0.tar.gz(r-4.5-noble)blacksheepr_1.21.0.tar.gz(r-4.4-noble)
blacksheepr_1.21.0.tgz(r-4.4-emscripten)blacksheepr_1.21.0.tgz(r-4.3-emscripten)
blacksheepr.pdf |blacksheepr.html
blacksheepr/json (API)
NEWS

# Install 'blacksheepr' in R:
install.packages('blacksheepr', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ruggleslab/blacksheepr/issues

Datasets:

On BioConductor:blacksheepr-1.19.0(bioc 3.21)blacksheepr-1.20.0(bioc 3.20)

sequencingrnaseqgeneexpressiontranscriptiondifferentialexpressiontranscriptomics

4.30 score 6 scripts 198 downloads 11 exports 123 dependencies

Last updated 2 months agofrom:4a716903d7. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 19 2024
R-4.5-winNOTEDec 19 2024
R-4.5-linuxNOTEDec 19 2024
R-4.4-winNOTEDec 19 2024
R-4.4-macNOTEDec 19 2024
R-4.3-winOKDec 19 2024
R-4.3-macOKDec 19 2024

Exports:annotationlist_buildercomparison_groupingscount_outlierscreate_heatmapdevadeva_normalizationdeva_resultsmake_comparison_columnsmake_outlier_tableoutlier_analysisoutlier_heatmap

Dependencies:abindannotateAnnotationDbiaskpassBHBiobaseBiocFileCacheBiocGenericsBiocParallelbiomaRtBiostringsbitbit64bitopsblobcachemcirclizecliclueclustercodetoolscolorspaceComplexHeatmapcpp11crayoncurlDBIdbplyrDelayedArrayDESeq2DEXSeqdigestdoParalleldplyrfansifarverfastmapfilelockforeachformatRfutile.loggerfutile.optionsgenefiltergeneplottergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesGetoptLongggplot2GlobalOptionsgluegridExtragtablehmshttrhttr2hwriterIRangesisobanditeratorsjsonliteKEGGRESTlabelinglambda.rlatticelifecyclelocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslpasillapillarpkgconfigplogrpngprettyunitsprogresspurrrR6rappdirsRColorBrewerRcppRcppArmadilloRhtslibrjsonrlangRsamtoolsRSQLiteS4ArraysS4VectorsscalesshapesnowSparseArraystatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectUCSC.utilsutf8vctrsviridisviridisLitewithrXMLxml2xtableXVectorzlibbioc

Outlier Analysis using blacksheepr

Rendered fromblacksheepr_vignette.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2019-10-11
Started: 2019-10-04

Readme and manuals

Help Manual

Help pageTopics
Create the annotation object for plotting in a heatmapannotationlist_builder
Create all of the groups based on the input metadatacomparison_groupings
Count up the outlier information for each of the groups you have made. If aggregating then you will have to turn the parameter on, but you still input the outliertable. Aggregate will count the total number of outliers AND nonoutliers in its operation, so it needs the original outlier table made by the <make_outlier_table> function.count_outliers
Plot out a heatmapcreate_heatmap
Run the entire blacksheep Function from Start to finishdeva
Normalization of data to prepare for deva. Uses a Median of Ratio method followed by a log2 transformation.deva_normalization
Utility function that allows easier grabbing of datadeva_results
Utility function that will take in columns with several subcategories, and output several columns each with binary classifications. ex) col1: A,B,C >> colA: A,notA,notA; colB: notB,B,notB; colC: notC,notC,Cmake_comparison_columns
Separate out the "i"th gene, take the bounds, and then create a column that says whether or not this gene is high, low, or none in a sample with regards to the other samples in the dataset. Repeat this for every gene to create a reference table.make_outlier_table
With the grouptablist generated by count_outliers - run through and run a fisher exact test to get the p.value for the difference in outlier count for each feature in each of your comparisonsoutlier_analysis
With the grouptablist generated by count_outliers - run through and run a fisher exact test to get the p.value for the difference in outlier count for each feature in each of your comparisonsoutlier_heatmap
sample_annotationdatasample_annotationdata
sample_phosphodatasample_phosphodata
sample_rnadatasample_rnadata