Package: acde 1.37.0
Juan Pablo Acosta
acde: Artificial Components Detection of Differentially Expressed Genes
This package provides a multivariate inferential analysis method for detecting differentially expressed genes in gene expression data. It uses artificial components, close to the data's principal components but with an exact interpretation in terms of differential genetic expression, to identify differentially expressed genes while controlling the false discovery rate (FDR). The methods on this package are described in the vignette or in the article 'Multivariate Method for Inferential Identification of Differentially Expressed Genes in Gene Expression Experiments' by J. P. Acosta, L. Lopez-Kleine and S. Restrepo (2015, pending publication).
Authors:
acde_1.37.0.tar.gz
acde_1.37.0.zip(r-4.5)acde_1.37.0.zip(r-4.4)acde_1.37.0.zip(r-4.3)
acde_1.37.0.tgz(r-4.4-any)acde_1.37.0.tgz(r-4.3-any)
acde_1.37.0.tar.gz(r-4.5-noble)acde_1.37.0.tar.gz(r-4.4-noble)
acde_1.37.0.tgz(r-4.4-emscripten)acde_1.37.0.tgz(r-4.3-emscripten)
acde.pdf |acde.html✨
acde/json (API)
NEWS
# Install 'acde' in R: |
install.packages('acde', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- phytophthora - Gene Expression Data for Tomato Plants Inoculated with _Phytophthora infestans_
On BioConductor:acde-1.35.0(bioc 3.20)acde-1.34.0(bioc 3.19)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
differentialexpressiontimecourseprincipalcomponentgeneexpressionmicroarraymrnamicroarray
Last updated 23 days agofrom:863c5e5080. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | NOTE | Oct 30 2024 |
R-4.5-linux | NOTE | Oct 30 2024 |
R-4.4-win | OK | Oct 30 2024 |
R-4.4-mac | OK | Oct 30 2024 |
R-4.3-win | OK | Oct 30 2024 |
R-4.3-mac | OK | Oct 30 2024 |
Exports:acac2bcaFDRfdrqvalstptc
Dependencies:boot