Package: Sconify 1.27.0
Sconify: A toolkit for performing KNN-based statistics for flow and mass cytometry data
This package does k-nearest neighbor based statistics and visualizations with flow and mass cytometery data. This gives tSNE maps"fold change" functionality and provides a data quality metric by assessing manifold overlap between fcs files expected to be the same. Other applications using this package include imputation, marker redundancy, and testing the relative information loss of lower dimension embeddings compared to the original manifold.
Authors:
Sconify_1.27.0.tar.gz
Sconify_1.27.0.zip(r-4.5)Sconify_1.27.0.zip(r-4.4)Sconify_1.27.0.zip(r-4.3)
Sconify_1.27.0.tgz(r-4.4-any)Sconify_1.27.0.tgz(r-4.3-any)
Sconify_1.27.0.tar.gz(r-4.5-noble)Sconify_1.27.0.tar.gz(r-4.4-noble)
Sconify_1.27.0.tgz(r-4.4-emscripten)Sconify_1.27.0.tgz(r-4.3-emscripten)
Sconify.pdf |Sconify.html✨
Sconify/json (API)
# Install 'Sconify' in R: |
install.packages('Sconify', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- bz.gmcsf.final - Bodenmiller-Zunder GM-CSF post-SCONE final data
- bz.gmcsf.final.norm.scale - Bodenmiller-Zunder GM-CSF post-SCONE final data, that's been quantile normalized and z scored.
- exist - Random musing
- funct.markers - Functional markers from the Wanderlust dataset.
- input.markers - Input markers for the Wanderlust dataset
- markers - Markers for the Wanderlust dataset
- wand.combined - Wanderlust data combined basal and IL7 cells
- wand.final - Post-scone output of the "combiend" Wanderlust data.
- wand.ideal.k - A named vector to help the user determine the ideal k for the Wanderlust dataset.
- wand.il7 - Wanderlust IL7 data
- wand.scone - Wanderlust scone output
On BioConductor:Sconify-1.27.0(bioc 3.21)Sconify-1.26.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
immunooncologysinglecellflowcytometrysoftwaremultiplecomparisonvisualization
Last updated 2 months agofrom:e6f83c28cf. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 30 2024 |
R-4.5-win | OK | Nov 30 2024 |
R-4.5-linux | OK | Nov 30 2024 |
R-4.4-win | OK | Nov 30 2024 |
R-4.4-mac | OK | Nov 30 2024 |
R-4.3-win | OK | Nov 30 2024 |
R-4.3-mac | OK | Nov 30 2024 |
Exports:FcsToTibbleFnnGetKnnDeGetMarkerNamesImputeTestingMakeHistMakeKnnListMeaningOfLifeParseMarkersPostProcessingProcessMultipleFilesQuantNormalizeElementsSconeValuesSplitFileStringToNumbersSubsampleAndTsneTsneVis
Dependencies:BHBiobaseBiocGenericsbitbit64clicliprcolorspacecpp11crayoncytolibdplyrfansifarverflowCoreFNNgenericsggplot2gluegtablehmsisobandlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellnlmepillarpkgconfigprettyunitsprogressR6RColorBrewerRcppreadrRhdf5librlangRProtoBufLibRtsneS4Vectorsscalestibbletidyselecttzdbutf8vctrsviridisLitevroomwithr
Assessing quality of CyTOF data with KNN
Rendered fromDataQuality.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-02-21
Started: 2017-10-19
Step 3: Post-Processing
Rendered fromStep3.PostProcessing.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-02-18
Started: 2017-10-04
Finding Ideal K
Rendered fromFindingIdealK.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-02-26
Started: 2017-10-11
Step 2: The Scone Workflow
Rendered fromStep2.TheSconeWorkflow.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-02-18
Started: 2017-10-04
Step 1: Pre-Processing
Rendered fromStep1.PreProcessing.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-02-26
Started: 2017-10-04