Package: Rmagpie 1.63.0

Camille Maumet

Rmagpie: MicroArray Gene-expression-based Program In Error rate estimation

Microarray Classification is designed for both biologists and statisticians. It offers the ability to train a classifier on a labelled microarray dataset and to then use that classifier to predict the class of new observations. A range of modern classifiers are available, including support vector machines (SVMs), nearest shrunken centroids (NSCs)... Advanced methods are provided to estimate the predictive error rate and to report the subset of genes which appear essential in discriminating between classes.

Authors:Camille Maumet <[email protected]>, with contributions from C. Ambroise J. Zhu

Rmagpie_1.63.0.tar.gz
Rmagpie_1.63.0.zip(r-4.5)Rmagpie_1.63.0.zip(r-4.4)Rmagpie_1.63.0.zip(r-4.3)
Rmagpie_1.63.0.tgz(r-4.4-any)Rmagpie_1.63.0.tgz(r-4.3-any)
Rmagpie_1.63.0.tar.gz(r-4.5-noble)Rmagpie_1.63.0.tar.gz(r-4.4-noble)
Rmagpie_1.63.0.tgz(r-4.4-emscripten)Rmagpie_1.63.0.tgz(r-4.3-emscripten)
Rmagpie.pdf |Rmagpie.html
Rmagpie/json (API)

# Install 'Rmagpie' in R:
install.packages('Rmagpie', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • vV70genes - VV70genes: van't Veer et al. 70 best genes in an object of class dataset.

On BioConductor:Rmagpie-1.63.0(bioc 3.21)Rmagpie-1.62.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

microarrayclassification

3.30 score 1 scripts 310 downloads 43 exports 13 dependencies

Last updated 3 months agofrom:cc7cbb86e0. Checks:1 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 30 2024
R-4.5-winNOTEDec 30 2024
R-4.5-linuxNOTEDec 30 2024
R-4.4-winNOTEDec 30 2024
R-4.4-macNOTEDec 30 2024
R-4.3-winNOTEDec 30 2024
R-4.3-macNOTEDec 30 2024

Exports:classifyNewSamplesfindFinalClassifiergetClassifierNamegetClassifierName<-getDatasetgetDataset<-getFeatureSelectionOptionsgetFeatureSelectionOptions<-getFinalClassifiergetGenesFromBestToWorstgetMaxSubsetSizegetMaxSubsetSize<-getModelsgetNoFolds1stLayergetNoFolds1stLayer<-getNoFolds2ndLayergetNoFolds2ndLayer<-getNoModelsgetNoOfRepeatsgetNoOfRepeats<-getNoThresholdsgetNoThresholds<-getOptionValuesgetOptionValues<-getResult1LayerCVgetResult2LayerCVgetResultsgetSpeedgetSpeed<-getSubsetsSizesgetSubsetsSizes<-getSvmKernelgetSvmKernel<-getTypeFoldCreationgetTypeFoldCreation<-initializeplotErrorsFoldTwoLayerCVplotErrorsRepeatedOneLayerCVplotErrorsSummaryOneLayerCVrankedGenesImgrunOneLayerExtCVrunTwoLayerExtCVshow

Dependencies:BiobaseBiocGenericsclassclustere1071genericskernlablatticeMASSMatrixpamrproxysurvival

Rmagpie Examples

Rendered fromMagpie_examples.Rnwusingutils::Sweaveon Dec 30 2024.

Last update: 2013-11-02
Started: 2013-11-01

Readme and manuals

Help Manual

Help pageTopics
assessment: A central class to perform one and two layers of external cross-validation on microarray dataassessment-class getClassifierName getClassifierName,assessment-method getClassifierName<- getClassifierName<-,assessment-method getFeatureSelectionMethod,assessment-method getNoFolds1stLayer getNoFolds1stLayer,assessment-method getNoFolds1stLayer<- getNoFolds1stLayer<-,assessment-method getNoFolds2ndLayer getNoFolds2ndLayer,assessment-method getNoFolds2ndLayer<- getNoFolds2ndLayer<-,assessment-method getNoOfRepeats getNoOfRepeats,assessment-method getNoOfRepeats<- getNoOfRepeats<-,assessment-method getResult1LayerCV getResult1LayerCV,assessment-method getResult1LayerCV<- getResult1LayerCV<-,assessment-method getResult2LayerCV getResult2LayerCV,assessment-method getResult2LayerCV<- getResult2LayerCV<-,assessment-method getSvmKernel getSvmKernel,assessment-method getSvmKernel<- getSvmKernel<-,assessment-method getTypeFoldCreation getTypeFoldCreation,assessment-method getTypeFoldCreation<- getTypeFoldCreation<-,assessment-method
classifyNewSamples Method to classify new samples for a given assessmentclassifyNewSamples classifyNewSamples,assessment-method classifyNewSamples-methods
"featureSelectionOptions": A virtual class to store the options of a feature selectionfeatureSelectionOptions-class getOptionValues,featureSelectionOptions-method
finalClassifier: A class to store the final classifier corresponding to an assessmentfinalClassifier-class getGenesFromBestToWorst getGenesFromBestToWorst,finalClassifier-method getModels getModels,finalClassifier-method
findFinalClassifier Method to train and build the final classifier based on an assessmentfindFinalClassifier findFinalClassifier,assessment-method findFinalClassifier-methods
geneSubsets: A class to handle the sizes of gene susbets to be tested during forward gene selectiongeneSubsets-class getMaxSubsetSize getMaxSubsetSize,geneSubsets-method getMaxSubsetSize<- getMaxSubsetSize<-,geneSubsets-method getNoModels getNoModels,geneSubsets-method getSpeed getSpeed,geneSubsets-method getSpeed<- getSpeed<-,geneSubsets-method getSubsetsSizes getSubsetsSizes,geneSubsets-method getSubsetsSizes<- getSubsetsSizes<-,geneSubsets-method
getDataset Method to access the attributes of a dataset from an assessmentgetDataset getDataset,assessment-method getDataset-methods
getFeatureSelectionOptions Method to access the attributes of a featureSelectionOptions from an assessmentgetFeatureSelectionOptions getFeatureSelectionOptions,assessment-method getFeatureSelectionOptions-methods
getFinalClassifier Method to access the attributes of a finalClassifier from an assessmentgetFinalClassifier getFinalClassifier,assessment-method getFinalClassifier-methods
getResults Method to access the result of one-layer and two-layers cross-validation from an assessmentgetResults getResults,assessment-method getResults-methods
Initialize objects of class from Rmagpieinitialize,assessment-method initialize,geneSubsets-method initialize,thresholds-method
plotErrorsFoldTwoLayerCV Method to plot the error rate of a two-layer Cross-validationplotErrorsFoldTwoLayerCV plotErrorsFoldTwoLayerCV,assessment-method plotErrorsFoldTwoLayerCV-methods
plotErrorsRepeatedOneLayerCV Method to plot the estimated error rates in each repeat of a one-layer Cross-validationplotErrorsRepeatedOneLayerCV plotErrorsRepeatedOneLayerCV,assessment-method plotErrorsRepeatedOneLayerCV-methods
plotErrorsSummaryOneLayerCV Method to plot the summary estimated error rates of a one-layer Cross-validationplotErrorsSummaryOneLayerCV plotErrorsSummaryOneLayerCV,assessment-method plotErrorsSummaryOneLayerCV-methods
rankedGenesImg Method to plot the genes according to their frequency in a microarray like imagerankedGenesImg rankedGenesImg,assessment-method rankedGenesImg-methods
runOneLayerExtCV: Method to run an external one-layer cross-validationrunOneLayerExtCV runOneLayerExtCV,assessment-method runOneLayerExtCV-methods
runTwoLayerExtCV: Method to run an external two-layers cross-validationrunTwoLayerExtCV runTwoLayerExtCV,assessment-method runTwoLayerExtCV-methods
getDataset<- Method to modify the attributes of a dataset from an assessmentgetDataset<- getDataset<-,assessment-method getDataset<--methods
getFeatureSelectionOptions<- Method to modify the attributes of a featureSelectionOptions from an assessmentgetFeatureSelectionOptions<- getFeatureSelectionOptions<-,assessment-method getFeatureSelectionOptions<--methods
show Display the object, by printing, plotting or whatever suits its classshow,assessment-method show,cvErrorRate-method show,cvErrorRate2ndLayer-method show,errorRate1stLayerCV-method show,errorRate2ndLayerCV-method show,finalClassifier-method show,frequencyGenes-method show,frequencyTopGenePerOneModel-method show,geneSubsets-method show,result2LayerCV-method show,resultRepeated1LayerCV-method show,resultRepeated2LayerCV-method show,resultSingle1LayerCV-method show,selectedGenes-method show,selectedGenes1stLayerCV-method show,selectedGenes2ndLayerCV-method show,selectedGenesPerOneOption-method show,thresholds-method
thresholds: A class to handle the thresholds to be tested during training of the Nearest Shrunken CentroidgetNoThresholds getNoThresholds,thresholds-method getNoThresholds<- getNoThresholds<-,thresholds-method getOptionValues getOptionValues,thresholds-method getOptionValues<- getOptionValues<-,thresholds-method thresholds-class
vV70genes: van't Veer et al. 70 best genes in an object of class dataset.vV70genes