Package: ProteoMM 1.25.0

Yuliya V Karpievitch

ProteoMM: Multi-Dataset Model-based Differential Expression Proteomics Analysis Platform

ProteoMM is a statistical method to perform model-based peptide-level differential expression analysis of single or multiple datasets. For multiple datasets ProteoMM produces a single fold change and p-value for each protein across multiple datasets. ProteoMM provides functionality for normalization, missing value imputation and differential expression. Model-based peptide-level imputation and differential expression analysis component of package follows the analysis described in “A statistical framework for protein quantitation in bottom-up MS based proteomics" (Karpievitch et al. Bioinformatics 2009). EigenMS normalisation is implemented as described in "Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition." (Karpievitch et al. Bioinformatics 2009).

Authors:Yuliya V Karpievitch, Tim Stuart and Sufyaan Mohamed

ProteoMM_1.25.0.tar.gz
ProteoMM_1.25.0.zip(r-4.5)ProteoMM_1.25.0.zip(r-4.4)ProteoMM_1.25.0.zip(r-4.3)
ProteoMM_1.25.0.tgz(r-4.4-any)ProteoMM_1.25.0.tgz(r-4.3-any)
ProteoMM_1.25.0.tar.gz(r-4.5-noble)ProteoMM_1.25.0.tar.gz(r-4.4-noble)
ProteoMM_1.25.0.tgz(r-4.4-emscripten)ProteoMM_1.25.0.tgz(r-4.3-emscripten)
ProteoMM.pdf |ProteoMM.html
ProteoMM/json (API)
NEWS

# Install 'ProteoMM' in R:
install.packages('ProteoMM', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • hs_peptides - Hs_peptides - peptide-level intensities for human
  • mm_peptides - Mm_peptides - peptide-level intensities for mouse

On BioConductor:ProteoMM-1.25.0(bioc 3.21)ProteoMM-1.24.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologymassspectrometryproteomicsnormalizationdifferentialexpression

3.38 score 12 scripts 206 downloads 18 exports 82 dependencies

Last updated 23 days agofrom:19b533b01c. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winNOTENov 19 2024
R-4.5-linuxNOTENov 19 2024
R-4.4-winNOTENov 19 2024
R-4.4-macNOTENov 19 2024
R-4.3-winNOTENov 19 2024
R-4.3-macNOTENov 19 2024

Exports:convert_log2eig_norm1eig_norm2eigen_pig.testget_presAbs_protsmake_intencitiesmake_metamakeLMFormulaMBimputepeptideLevel_DEpeptideLevel_PresAbsDEplot_3_pep_trends_NOfileplot_volcanoplot_volcano_wLabprot_level_multi_partprot_level_multiMat_PresAbssubset_proteins

Dependencies:AnnotationDbiaskpassBiobaseBiocFileCacheBiocGenericsbiomaRtBiostringsbitbit64blobcachemclicolorspacecpp11crayoncurlDBIdbplyrdigestdplyrfansifarverfastmapfilelockgdatagenericsGenomeInfoDbGenomeInfoDbDataggplot2ggrepelgluegtablegtoolshmshttrhttr2IRangesisobandjsonliteKEGGRESTlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigplogrpngprettyunitsprogresspurrrR6rappdirsRColorBrewerRcpprlangRSQLiteS4VectorsscalesstringistringrsystibbletidyrtidyselectUCSC.utilsutf8vctrsviridisLitewithrxml2XVectorzlibbioc

ProteoMM - Multi-Dataset Model-based Differential Expression Proteomics Platform

Rendered fromProteoMM_vignette.Rmdusingknitr::knitron Nov 19 2024.

Last update: 2018-10-09
Started: 2018-10-09