Package: PathoStat 1.33.0

Solaiappan Manimaran

PathoStat: PathoStat Statistical Microbiome Analysis Package

The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis.

Authors:Solaiappan Manimaran <manimaran_1975@hotmail.com>, Matthew Bendall <bendall@gwmail.gwu.edu>, Sandro Valenzuela Diaz <sandrolvalenzuelad@gmail.com>, Eduardo Castro <castronallar@gmail.com>, Tyler Faits <tfaits@gmail.com>, Yue Zhao <jasonzhao0307@gmail.com>, Anthony Nicholas Federico <anfed@bu.edu>, W. Evan Johnson <wej@bu.edu>

PathoStat_1.33.0.tar.gz
PathoStat_1.33.0.zip(r-4.5)PathoStat_1.33.0.zip(r-4.4)PathoStat_1.33.0.zip(r-4.3)
PathoStat_1.33.0.tgz(r-4.5-any)PathoStat_1.33.0.tgz(r-4.4-any)PathoStat_1.33.0.tgz(r-4.3-any)
PathoStat_1.33.0.tar.gz(r-4.5-noble)PathoStat_1.33.0.tar.gz(r-4.4-noble)
PathoStat_1.33.0.tgz(r-4.4-emscripten)PathoStat_1.33.0.tgz(r-4.3-emscripten)
PathoStat.pdf |PathoStat.html
PathoStat/json (API)
NEWS

# Install 'PathoStat' in R:
install.packages('PathoStat', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mani2012/pathostat/issues9 issues

Datasets:
  • pstat - Pathostat object generated from example pathoscope report files
  • pstat - Pathostat object generated from example pathoscope report files
  • pstat - Pathostat object generated from example pathoscope report files
  • pstat - Pathostat object generated from example pathoscope report files

On BioConductor:PathoStat-1.33.0(bioc 3.21)PathoStat-1.32.0(bioc 3.20)

microbiomemetagenomicsgraphandnetworkmicroarraypatternlogicprincipalcomponentsequencingsoftwarevisualizationrnaseqimmunooncology

5.90 score 8 stars 8 scripts 357 downloads 32 exports 196 dependencies

Last updated 5 months agofrom:1f65914ec5. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-winNOTEMar 29 2025
R-4.5-macNOTEMar 29 2025
R-4.5-linuxNOTEMar 29 2025
R-4.4-winNOTEMar 29 2025
R-4.4-macNOTEMar 29 2025
R-4.4-linuxNOTEMar 29 2025
R-4.3-winNOTEMar 29 2025
R-4.3-macNOTEMar 29 2025

Exports:Bootstrap_LOOCV_LR_AUCChisq_Test_PamfindRAfromCountfindTaxonMatfindTaxonomyfindTaxonomy300Fisher_Test_PamGET_PAMgetShinyInputgetShinyInputCombatgetShinyInputOriggetSignatureFromMultipleGlmnetgrepTidloadPathoscopeReportsloadPstatlog2CPMLOOAUC_simple_multiple_noplot_one_dfLOOAUC_simple_multiple_one_dfpathostat1percentphyloseq_to_edgeRplotPCAPlotlyplotPCoAPlotlyreadPathoscopeDatarunPathoStatsavePstatsetShinyInputsetShinyInputCombatsetShinyInputOrigsummarizeTableTranslateIdToTaxLevelWilcox_Test_df

Dependencies:abindade4apeaskpassbase64encBHBiobaseBiocGenericsBiocManagerBiocParallelBiocStylebiomformatBiostringsbitopsbookdownbrewbriobslibcachemcallrcaToolscirclizeclicliprclueclustercodetoolscolorspacecommonmarkComplexHeatmapcorpcorcpp11crayoncredentialscrosstalkcurldata.tableDelayedArraydescDESeq2devtoolsdiffobjdigestdoParalleldownlitdplyrDTedgeRellipsisevaluatefansifarverfastmapfontawesomeforeachformatRfsfutile.loggerfutile.optionsgdatagenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesgertGetoptLongggplot2ghgitcredsglmnetGlobalOptionsgluegmodelsgplotsgtablegtoolshighrhtmltoolshtmlwidgetshttpuvhttrhttr2igraphiniIRangesisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglambda.rlaterlatticelazyevallifecyclelimmalocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImulttestmunsellnlmeopensslpermutephyloseqpillarpixmappkgbuildpkgconfigpkgdownpkgloadplotlyplyrpngpraiseprettyunitsprocessxprofvispromisespspurrrR6raggrappdirsrcmdcheckRColorBrewerRcppRcppArmadilloRcppEigenremotesrentrezreshape2rhdf5rhdf5filtersRhdf5librjsonrlangrmarkdownROCRroxygen2rprojrootrstudioapirversionsS4ArraysS4VectorssassscalessessioninfoshapeshinyshinyjssnowsourcetoolsspSparseArraystatmodstringistringrSummarizedExperimentsurvivalsyssystemfontstestthattextshapingtibbletidyrtidyselecttinytexUCSC.utilsurlcheckerusethisutf8vctrsveganviridisLitewaldowebshotwhiskerwithrxfunXMLxml2xopenxtableXVectoryamlzip

Run PathoStat

Rendered fromPathoStat-vignette.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2018-10-23
Started: 2018-04-02

Citation

To cite package ‘PathoStat’ in publications use:

Manimaran S, Bendall M, Diaz SV, Castro E, Faits T, Zhao Y, Federico AN, Johnson WE (2020). PathoStat: PathoStat Statistical Microbiome Analysis Package. R package version 1.33.0, https://bioconductor.org/packages/PathoStat.

ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.

Corresponding BibTeX entry:

  @Manual{,
    title = {PathoStat: PathoStat Statistical Microbiome Analysis
      Package},
    author = {Solaiappan Manimaran and Matthew Bendall and Sandro
      Valenzuela Diaz and Eduardo Castro and Tyler Faits and Yue Zhao
      and Anthony Nicholas Federico and W. Evan Johnson},
    year = {2020},
    note = {R package version 1.33.0},
    url = {https://bioconductor.org/packages/PathoStat},
  }

Readme and manuals

PathoStat: Statistical Microbiome Analysis Toolkit

PathoStat is a R shiny package, designed for performing Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files.

The package includes:

1. Data Summary and Filtering 
2. Relative Abundance plots (Stacked Bar Plot, Heatmap)
3. Multiple species boxplot visualization
4. Diversity analysis (Alpha and Beta diversity)
5. Differential Expression (DEseq2, edgeR)
6. Dimension Reduction (PCA, PCoA)
7. Biomarker identification

runPathoStat is the pipeline function that generates the PathoStat report and launches shiny app when in interactive mode. It combines all the functions into one step.

Run Pathostat

To launch PathoStat in R, just enter the command:

runPathoStat()

Installation

To begin, install Bioconductor and simply run the following to automatically install PathoStat and all the dependencies as follows.

if (!requireNamespace("BiocManager", quietly=TRUE))
    install.packages("BiocManager")
BiocManager::install("PathoStat")

If you want to install the latest development version of PathoStat from Github, use devtools to install it as follows:

require(devtools)
install_github("compbiomed/PathoStat")

If all went well you should now be able to load PathoStat:

require(PathoStat)
vignette('PathoStat-vignette', package='PathoStat')
runPathoStat()

Help Manual

Help pageTopics
Do bootstrap and LOOCVBootstrap_LOOCV_LR_AUC
Given PAM and disease/control annotation, do Chi-square test for each row of PAMChisq_Test_Pam
Return the Relative Abundance (RA) data for the given count OTU tablefindRAfromCount
Find the Taxonomy Information MatrixfindTaxonMat
Find the taxonomy for unlimited tidsfindTaxonomy
Find the taxonomy for maximum 300 tidsfindTaxonomy300
Given PAM and disease/control annotation, do Chi-square test for each row of PAMFisher_Test_Pam
Format taxonomy table for renderingformatTaxTable
transform cpm counts to presence-absence matrixGET_PAM
Getter function to get the shinyInput optiongetShinyInput
Getter function to get the shinyInputCombat optiongetShinyInputCombat
Getter function to get the shinyInputOrig optiongetShinyInputOrig
Use Lasso to do feature selectiongetSignatureFromMultipleGlmnet
Greps the tid from the given identifier stringgrepTid
Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, ret[["Final.Best.Hit.Read.Numbers"]] on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.loadPathoscopeReports
Load the R data(.rda) file with pathostat objectloadPstat
Compute log2(counts per mil reads) and library size for each samplelog2CPM
LOOCVLOOAUC_simple_multiple_noplot_one_df
LOOCV with ROC curveLOOAUC_simple_multiple_one_df
PathoStat class to store PathoStat input data including phyloseq objectPathoStat-class pathostat1
Compute percentagepercent
Convert phyloseq OTU count data into DGEList for edgeR packagephyloseq_to_edgeR
Plot PCAplotPCAPlotly
Plot PCoAplotPCoAPlotly
pathostat object generated from example pathoscope report filespstat pstat_data
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count datareadPathoscopeData
Statistical Microbiome Analysis on the pathostat input and generates a html report and produces interactive shiny app plotsrunPathoStat
Save the pathostat object to R data(.rda) filesavePstat
Setter function to set the shinyInput optionsetShinyInput
Setter function to set the shinyInputCombat optionsetShinyInputCombat
Setter function to set the shinyInputOrig optionsetShinyInputOrig
Summarize samplesummarizeTable
Find the taxonomy for the given taxon id nameTranslateIdToTaxLevel
Mann-whitney test for a dataframeWilcox_Test_df