Package: POWSC 1.15.0

Kenong Su

POWSC: Simulation, power evaluation, and sample size recommendation for single cell RNA-seq

Determining the sample size for adequate power to detect statistical significance is a crucial step at the design stage for high-throughput experiments. Even though a number of methods and tools are available for sample size calculation for microarray and RNA-seq in the context of differential expression (DE), this topic in the field of single-cell RNA sequencing is understudied. Moreover, the unique data characteristics present in scRNA-seq such as sparsity and heterogeneity increase the challenge. We propose POWSC, a simulation-based method, to provide power evaluation and sample size recommendation for single-cell RNA sequencing DE analysis. POWSC consists of a data simulator that creates realistic expression data, and a power assessor that provides a comprehensive evaluation and visualization of the power and sample size relationship.

Authors:Kenong Su [aut, cre], Hao Wu [aut]

POWSC_1.15.0.tar.gz
POWSC_1.15.0.zip(r-4.5)POWSC_1.15.0.zip(r-4.4)POWSC_1.15.0.zip(r-4.3)
POWSC_1.15.0.tgz(r-4.4-any)POWSC_1.15.0.tgz(r-4.3-any)
POWSC_1.15.0.tar.gz(r-4.5-noble)POWSC_1.15.0.tar.gz(r-4.4-noble)
POWSC_1.15.0.tgz(r-4.4-emscripten)POWSC_1.15.0.tgz(r-4.3-emscripten)
POWSC.pdf |POWSC.html
POWSC/json (API)
NEWS

# Install 'POWSC' in R:
install.packages('POWSC', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:POWSC-1.15.0(bioc 3.21)POWSC-1.14.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

differentialexpressionimmunooncologysinglecellsoftware

4.00 score 7 scripts 144 downloads 9 exports 68 dependencies

Last updated 23 days agofrom:ce35b269cd. Checks:OK: 1 WARNING: 4 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winWARNINGNov 08 2024
R-4.5-linuxWARNINGNov 08 2024
R-4.4-winWARNINGNov 08 2024
R-4.4-macNOTENov 08 2024
R-4.3-winWARNINGNov 08 2024
R-4.3-macNOTENov 08 2024

Exports:Est2Phaseplot_POWSCPower_ContPower_DiscrunDErunPOWSCSimulate2SCESimulateMultiSCEssummary_POWSC

Dependencies:abindaskpassBiobaseBiocGenericsclicolorspacecrayoncurldata.tableDelayedArrayfansifarvergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehmshttrIRangesisobandjsonlitelabelinglatticelifecyclelimmamagrittrMASSMASTMatrixMatrixGenericsmatrixStatsmgcvmimemunsellnlmeopensslpheatmappillarpkgconfigplyrprettyunitsprogressR6RColorBrewerRcppreshape2rlangS4ArraysS4VectorsscalesSingleCellExperimentSparseArraystatmodstringistringrSummarizedExperimentsystibbleUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc

POWSC: power and sample size snalysis for single-cell RNA-seq

Rendered fromPOWSC.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2021-05-01
Started: 2021-03-19

Readme and manuals

Help Manual

Help pageTopics
sample data for POWSCes_mef_sce
Estimate characterized parameters for a given scRNA-seq data (SingleCellExperiment object or a count matrix).Est2Phase
plot the result use visualization.plot_POWSC
Run DE analysis by using MAST. Here we output two result tables corresponding to two forms of DE genes. These parameters include four gene-wise parameters and two cell-wise parameters.Power_Cont
Run DE analysis by using MAST. Here we output two result tables corresponding to two forms of DE genes. These parameters include four gene-wise parameters and two cell-wise parameters.Power_Disc
A wrapper function for calling DE genes. This contains two methods: MAST and SC2PrunDE
Run DE analysis by using MAST. Here we output two result tables corresponding to two forms of DE genes. These parameters include four gene-wise parameters and two cell-wise parameters.runMAST
Estimate characterized parameters for a given scRNA-seq data (SingleCellExperiment object or a count matrix).runPOWSC
Run DE analysis by using SC2P. Here we output two result tables corresponding to two forms of DE genes.runSC2P
sample data for GSE67835sce
Simulate the data for two-group comparison; e.g., treatment v.s. control It simulates the DE changes in two forms corresponding two types of DE genesSimulate2SCE
Simulate the data for multiple-group comparisons; e.g., different cell types in blood It simulates the DE changes in two forms corresponding two types of DE genesSimulateMultiSCEs
summary of the resultsummary_POWSC