Package: PIUMA 1.3.0

Mattia Chiesa

PIUMA: Phenotypes Identification Using Mapper from topological data Analysis

The PIUMA package offers a tidy pipeline of Topological Data Analysis frameworks to identify and characterize communities in high and heterogeneous dimensional data.

Authors:Mattia Chiesa [aut, cre], Arianna Dagliati [aut], Alessia Gerbasi [aut], Giuseppe Albi [aut], Laura Ballarini [aut], Luca Piacentini [aut]

PIUMA_1.3.0.tar.gz
PIUMA_1.3.0.zip(r-4.5)PIUMA_1.3.0.zip(r-4.4)PIUMA_1.3.0.zip(r-4.3)
PIUMA_1.3.0.tgz(r-4.4-any)PIUMA_1.3.0.tgz(r-4.3-any)
PIUMA_1.3.0.tar.gz(r-4.5-noble)PIUMA_1.3.0.tar.gz(r-4.4-noble)
PIUMA_1.3.0.tgz(r-4.4-emscripten)PIUMA_1.3.0.tgz(r-4.3-emscripten)
PIUMA.pdf |PIUMA.html
PIUMA/json (API)
NEWS

# Install 'PIUMA' in R:
install.packages('PIUMA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bioinfomonzino/piuma/issues

Datasets:
  • df_test_proj - A dataset to test the 'dfToProjection' and 'dfToDistance' funtions of 'PIUMA' package.
  • tda_test_data - A TDAobj to test the 'PIUMA' package.
  • vascEC_meta - Example datasets for PIUMA package
  • vascEC_norm - We tested PIUMA on a subset of the single-cell RNA Sequencing dataset (GSE:GSE193346 generated and published by Feng et al. (2022) on Nature Communication to demonstrate that distinct transcriptional profiles are present in specific cell types of each heart chambers, which were attributed to have roles in cardiac development. In this tutorial, our aim will be to exploit PIUMA for identifying sub-population of vascular endothelial cells, which can be associated with specific heart developmental stages. The original dataset consisted of three layers of heterogeneity: cell type, stage and zone (i.e., heart chamber). Our testing dataset was obtained by subsetting vascular endothelial cells (cell type) by Seurat object, extracting raw counts and metadata. Thus, we filtered low expressed genes and normalized data by DaMiRseq

On BioConductor:PIUMA-1.3.0(bioc 3.21)PIUMA-1.2.0(bioc 3.20)

clusteringgraphandnetworkdimensionreductionnetworkclassification

5.15 score 4 stars 2 scripts 110 downloads 31 exports 106 dependencies

Last updated 3 months agofrom:223a516951. Checks:1 OK, 6 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 19 2024
R-4.5-winWARNINGDec 19 2024
R-4.5-linuxWARNINGDec 19 2024
R-4.4-winWARNINGDec 19 2024
R-4.4-macWARNINGDec 19 2024
R-4.3-winWARNINGDec 19 2024
R-4.3-macWARNINGDec 19 2024

Exports:checkNetEntropycheckScaleFreeModeldfToDistancedfToProjectiongetCompgetDfMappergetDistMatgetJaccgetNodeDataMatgetOrigDatagetOutcomegetOutcomeFactgetScaledDatajaccardjaccardMatrixmakeTDAobjmakeTDAobjFromSEmapperCoreplot_projection_plotplot_ScaleFreeLawscaleData_01setCompsetDfMappersetDistMatsetJaccsetNodeDataMatsetOrigDatasetOutcomesetOutcomeFactsetScaledDatatdaDfEnrichment

Dependencies:abindaskpassbackportsbase64encBiobaseBiocGenericsbslibcachemcheckmatecliclustercolorspacecpp11crayoncurldata.tabledbscanDelayedArraydigestevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegridExtragtableherehighrHmischtmlTablehtmltoolshtmlwidgetshttrigraphIRangesisobandjquerylibjsonlitekernlabknitrlabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmennetopensslpatchworkpermutepillarpkgconfigpngR6rappdirsRColorBrewerRcppRcppEigenRcppTOMLreticulaterlangrmarkdownrpartrprojrootRSpectrarstudioapiS4ArraysS4VectorssassscalesSparseArraystringistringrSummarizedExperimentsystibbletinytextsneUCSC.utilsumaputf8vctrsveganviridisviridisLitewithrxfunXVectoryamlzlibbioc

The PIUMA package - Phenotypes Identification Using Mapper from topological data Analysis

Rendered fromPIUMA_vignette.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2024-05-17
Started: 2024-03-22

Readme and manuals

Help Manual

Help pageTopics
Compute the Network EntropycheckNetEntropy
Assessment of Scale-Free model fittingcheckScaleFreeModel
A dataset to test the 'dfToProjection' and 'dfToDistance' funtions of 'PIUMA' package.df_test_proj
Compute the Distance Matrix from TDAobjdfToDistance
Data projection using a Dimensionality Reduction MethoddfToProjection
Getter method for the 'comp' slot of a TDAobj object.getComp getComp,PIUMA-getComp getComp,TDAobj-method
Getter method for the 'dfMapper' slot of a TDAobj object.getDfMapper getDfMapper,PIUMA-getDfMapper getDfMapper,TDAobj-method
Getter method for the 'dist_mat' slot of a TDAobj object.getDistMat getDistMat,PIUMA-getDistMat getDistMat,TDAobj-method
Getter method for the 'jacc' slot of a TDAobj object.getJacc getJacc,PIUMA-getJacc getJacc,TDAobj-method
Getter method for the 'node_data_mat' slot of a TDAobj object.getNodeDataMat getNodeDataMat,PIUMA-getNodeDataMat getNodeDataMat,TDAobj-method
Getter method for the 'orig_data' slot of a TDAobj object.getOrigData getOrigData,PIUMA-getOrigData getOrigData,TDAobj-method
Getter method for the 'outcome' slot of a TDAobj object.getOutcome getOutcome,PIUMA-getOutcome getOutcome,TDAobj-method
Getter method for the 'outcomeFact' slot of a TDAobj object.getOutcomeFact getOutcomeFact,PIUMA-getOutcomeFact getOutcomeFact,TDAobj-method
Getter method for the 'scaled_data' slot of a TDAobj object.getScaledData getScaledData,PIUMA-getScaledData getScaledData,TDAobj-method
Compute the Matrix of Jaccard IndexesjaccardMatrix
Import data and generate the TDAobj objectmakeTDAobj
Import SummarizedExperiment data and generate the TDAobj objectmakeTDAobjFromSE
Implement the TDA Mapper algorithm on TDAobjmapperCore
PIUMA: Phenotypes Identification Using Mapper from topological data AnalysisPIUMA
Setter method for the 'comp' slot of a TDAobj object.setComp setComp,PIUMA-setComp setComp,TDAobj-method
Setter method for the 'dfMapper' slot of a TDAobj object.setDfMapper setDfMapper,PIUMA-setDfMapper setDfMapper,TDAobj-method
Setter method for the 'dist_mat' slot of a TDAobj object.setDistMat setDistMat,PIUMA-setDistMat setDistMat,TDAobj-method
Setter method for the 'jacc' slot of a TDAobj object.setJacc setJacc,PIUMA-setJacc setJacc,TDAobj-method
Setter method for the 'node_data_mat' slot of a TDAobj object.setNodeDataMat setNodeDataMat,PIUMA-setNodeDataMat setNodeDataMat,TDAobj-method
Setter method for the 'orig_data' slot of a TDAobj object.setOrigData setOrigData,PIUMA-setOrigData setOrigData,TDAobj-method
Setter method for the 'outcome' slot of a TDAobj object.setOutcome setOutcome,PIUMA-setOutcome setOutcome,TDAobj-method
Setter method for the 'outcomeFact' slot of a TDAobj object.setOutcomeFact setOutcomeFact,PIUMA-setOutcomeFact setOutcomeFact,TDAobj-method
Setter method for the 'scaled_data' slot of a TDAobj object.setScaledData setScaledData,PIUMA-setScaledData setScaledData,TDAobj-method
A TDAobj to test the 'PIUMA' package.tda_test_data
Add information to TDAobjtdaDfEnrichment
The object 'TDAobj'TDAobj-class
Example datasets for PIUMA packagevascEC_meta
We tested PIUMA on a subset of the single-cell RNA Sequencing dataset (GSE:GSE193346 generated and published by Feng et al. (2022) on Nature Communication to demonstrate that distinct transcriptional profiles are present in specific cell types of each heart chambers, which were attributed to have roles in cardiac development. In this tutorial, our aim will be to exploit PIUMA for identifying sub-population of vascular endothelial cells, which can be associated with specific heart developmental stages. The original dataset consisted of three layers of heterogeneity: cell type, stage and zone (i.e., heart chamber). Our testing dataset was obtained by subsetting vascular endothelial cells (cell type) by Seurat object, extracting raw counts and metadata. Thus, we filtered low expressed genes and normalized data by DaMiRseqvascEC_norm