Package: PIUMA 1.3.0
PIUMA: Phenotypes Identification Using Mapper from topological data Analysis
The PIUMA package offers a tidy pipeline of Topological Data Analysis frameworks to identify and characterize communities in high and heterogeneous dimensional data.
Authors:
PIUMA_1.3.0.tar.gz
PIUMA_1.3.0.zip(r-4.5)PIUMA_1.3.0.zip(r-4.4)PIUMA_1.3.0.zip(r-4.3)
PIUMA_1.3.0.tgz(r-4.4-any)PIUMA_1.3.0.tgz(r-4.3-any)
PIUMA_1.3.0.tar.gz(r-4.5-noble)PIUMA_1.3.0.tar.gz(r-4.4-noble)
PIUMA_1.3.0.tgz(r-4.4-emscripten)PIUMA_1.3.0.tgz(r-4.3-emscripten)
PIUMA.pdf |PIUMA.html✨
PIUMA/json (API)
NEWS
# Install 'PIUMA' in R: |
install.packages('PIUMA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bioinfomonzino/piuma/issues
- df_test_proj - A dataset to test the 'dfToProjection' and 'dfToDistance' funtions of 'PIUMA' package.
- tda_test_data - A TDAobj to test the 'PIUMA' package.
- vascEC_meta - Example datasets for PIUMA package
- vascEC_norm - We tested PIUMA on a subset of the single-cell RNA Sequencing dataset (GSE:GSE193346 generated and published by Feng et al. (2022) on Nature Communication to demonstrate that distinct transcriptional profiles are present in specific cell types of each heart chambers, which were attributed to have roles in cardiac development. In this tutorial, our aim will be to exploit PIUMA for identifying sub-population of vascular endothelial cells, which can be associated with specific heart developmental stages. The original dataset consisted of three layers of heterogeneity: cell type, stage and zone (i.e., heart chamber). Our testing dataset was obtained by subsetting vascular endothelial cells (cell type) by Seurat object, extracting raw counts and metadata. Thus, we filtered low expressed genes and normalized data by DaMiRseq
On BioConductor:PIUMA-1.3.0(bioc 3.21)PIUMA-1.2.0(bioc 3.20)
clusteringgraphandnetworkdimensionreductionnetworkclassification
Last updated 2 months agofrom:223a516951. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 19 2024 |
R-4.5-win | WARNING | Dec 19 2024 |
R-4.5-linux | WARNING | Dec 19 2024 |
R-4.4-win | WARNING | Dec 19 2024 |
R-4.4-mac | WARNING | Dec 19 2024 |
R-4.3-win | WARNING | Dec 19 2024 |
R-4.3-mac | WARNING | Dec 19 2024 |
Exports:checkNetEntropycheckScaleFreeModeldfToDistancedfToProjectiongetCompgetDfMappergetDistMatgetJaccgetNodeDataMatgetOrigDatagetOutcomegetOutcomeFactgetScaledDatajaccardjaccardMatrixmakeTDAobjmakeTDAobjFromSEmapperCoreplot_projection_plotplot_ScaleFreeLawscaleData_01setCompsetDfMappersetDistMatsetJaccsetNodeDataMatsetOrigDatasetOutcomesetOutcomeFactsetScaledDatatdaDfEnrichment
Dependencies:abindaskpassbackportsbase64encBiobaseBiocGenericsbslibcachemcheckmatecliclustercolorspacecpp11crayoncurldata.tabledbscanDelayedArraydigestevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegridExtragtableherehighrHmischtmlTablehtmltoolshtmlwidgetshttrigraphIRangesisobandjquerylibjsonlitekernlabknitrlabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmennetopensslpatchworkpermutepillarpkgconfigpngR6rappdirsRColorBrewerRcppRcppEigenRcppTOMLreticulaterlangrmarkdownrpartrprojrootRSpectrarstudioapiS4ArraysS4VectorssassscalesSparseArraystringistringrSummarizedExperimentsystibbletinytextsneUCSC.utilsumaputf8vctrsveganviridisviridisLitewithrxfunXVectoryamlzlibbioc