Package: PDATK 1.15.0
PDATK: Pancreatic Ductal Adenocarcinoma Tool-Kit
Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.
Authors:
PDATK_1.15.0.tar.gz
PDATK_1.15.0.zip(r-4.5)PDATK_1.15.0.zip(r-4.4)PDATK_1.15.0.zip(r-4.3)
PDATK_1.15.0.tgz(r-4.4-any)PDATK_1.15.0.tgz(r-4.3-any)
PDATK_1.15.0.tar.gz(r-4.5-noble)PDATK_1.15.0.tar.gz(r-4.4-noble)
PDATK_1.15.0.tgz(r-4.4-emscripten)PDATK_1.15.0.tgz(r-4.3-emscripten)
PDATK.pdf |PDATK.html✨
PDATK/json (API)
# Install 'PDATK' in R: |
install.packages('PDATK', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bhklab/pdatk/issues
- CSPC_MAE - A 'MultiAssayExperiment' containing cohorts of pancreatic cancer patients, for use in package examples.
- birnbaum - Published classifier gene signature for Birnbaum
- chen - Published classifier gene signature for Chen
- cohortSubtypeDFs - A list of sample subtypes for the data in sampleCohortList
- haiderSigScores - Classifier survival scores for Haider
- sampleClinicalModel - Sample ClinicalModel Containing the ICGC micro-array cohort from 'MetaGxPancreas' as training data.
- sampleCohortList - A Set of Example Patient Cohorts
- sampleICGCmicro - A Sample SurvivalExperiment Containing Data from the ICGC micro-array cohort from 'MetaGxPancreas'
- samplePCOSPmodel - A Sample PCOSP Model Containing the ICGC micro-array cohort from 'MetaGxPancreas' as training data.
- samplePCOSPpredList - Sample CohortList with PCOSP Risk Predictions
- samplePCSIsurvExp - Sample SurvivalExperiment Containing the PCSI rna-sequencing cohort from 'MetaGxPancreas'.
- sampleRGAmodel - Sample RGA Model Containing the ICGC micro-array cohort from 'MetaGxPancreas' as training data.
- sampleRLSmodel - Sample RLS Model Containing the ICGC micro-array cohort from 'MetaGxPancreas' as training data.
- sampleTrainedPCOSPmodel - A Sample Trained PCOSP Model Containing the ICGC micro-array cohort from 'MetaGxPancreas' as training data.
- sampleValPCOSPmodel - Sample Validated PCOSP Model for Plotting Examples
On BioConductor:PDATK-1.13.0(bioc 3.20)PDATK-1.12.0(bioc 3.19)
geneexpressionpharmacogeneticspharmacogenomicssoftwareclassificationsurvivalclusteringgeneprediction
Last updated 23 days agofrom:6c52f5ff8c. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 30 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:.plotNetworkassignColDataColumnassignSubtypesbarPlotModelComparisonClinicalModelCohortListcompareModelsConMetaclustModelConsensusMetaclusteringModelCoxModeldensityPlotModelComparisondropNotCensoredfindCommonGenesfindCommonSamplesforestPlotGeneFuModelgetModelSeedgetTopFeatureshasColDataColumnsmergeModelComparisonmodelParamsmodelParams<-modelsmodels<-NCSModelNetworkCommunitySearchModelnormalizeoptimalKMinimizeAmbiguityPCOSPplotNetworkGraphplotROCplotSurvivalCurvespredictClassespreprocessCaretRandomGeneAssignmentModelRandomLabelShufflingModelrankFeaturesremoveColDataFactorColumnsremoveFactorColumnsrenameColDataColumnsrenameColumnsRGAModelRLSModelrunGSEAshowsubsetSurvivalExperimentSurvivalModeltrainDatatrainData<-trainModelvalidateModelvalidationDatavalidationData<-validationStatsvalidationStats<-
Dependencies:abindAIMSALLamapAnnotationDbiaskpassbackportsbase64encbenchBHBiobaseBiocBaseUtilsBiocFileCacheBiocGenericsBiocParallelbiomaRtBiostringsbitbit64bitopsblobbootbootstrapbroombslibBumpyMatrixcachemcarcarDatacaretcaToolscheckmateCircStatsclasscliclockclusterclusterReprocodetoolscolorspacecommonmarkConsensusClusterPlusCoreGxcorrplotcowplotcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArrayDerivdiagramdigestdoBydotCall64dplyrDTdtwe1071evaluateexactRankTestsfansifarverfastmapfastmatchfgseafieldsfilelockfontawesomeforeachformatRFormulafsfutile.loggerfutile.optionsfuturefuture.applygenefugenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggplotifyggpubrggrepelggsciggsignifggtextglobalsgluegowergplotsgridExtragridGraphicsgridtextgtablegtoolshardhathighrhmshtmltoolshtmlwidgetshttpuvhttrhttr2iC10iC10TrainingDataigraphimputeipredIRangesisobanditeratorsjpegjquerylibjsonliteKEGGRESTKernSmoothkm.ciKMsurvknitrlabelinglambda.rlaterlatticelavalazyevallifecyclelimmalistenvlme4lmtestlsalubridatemagrittrmapsmarkdownmarrayMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmaxstatmclustmemoisemgcvmicrobenchmarkmimeminqaModelMetricsmodelrMultiAssayExperimentmunsellmvtnormnlmenloptrnnetnumDerivopensslpamrparallellypbkrtestpianopillarpkgconfigplogrplyrpngpolynomprettyunitspROCprodlimprofmemprogressprogressrpromisesproxypurrrquantregR6rappdirsRColorBrewerRcppRcppEigenrecipesrelationsreportROCreshape2rlangrmarkdownrmetarpartRSQLiterstatixS4ArraysS4VectorssassscalessetsshapeshinyshinydashboardshinyjsslamsnowSnowballCsourcetoolsspamSparseArraySparseMSQUAREMstatmodstringistringrSummarizedExperimentSuppDistssurvcompsurvivalsurvivalROCsurvminersurvMiscswitchBoxsystibbletidyrtidyselecttimechangetimeDatetinytextzdbUCSC.utilsutf8vcdvctrsverificationviridisLitevisNetworkwithrxfunxml2xtableXVectoryamlyulab.utilszlibbioczoo
An Introduction to PDATK Classes and Methods
Rendered fromPDATK_introduction.rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2021-02-23
Started: 2021-02-02
PCOSP: Pancreatic Cancer Overall Survival Predictor
Rendered fromPCOSP_model_analysis.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2021-12-14
Started: 2021-06-14