Package: OPWeight 1.29.0
OPWeight: Optimal p-value weighting with independent information
This package perform weighted-pvalue based multiple hypothesis test and provides corresponding information such as ranking probability, weight, significant tests, etc . To conduct this testing procedure, the testing method apply a probabilistic relationship between the test rank and the corresponding test effect size.
Authors:
OPWeight_1.29.0.tar.gz
OPWeight_1.29.0.zip(r-4.5)OPWeight_1.29.0.zip(r-4.4)OPWeight_1.29.0.zip(r-4.3)
OPWeight_1.29.0.tgz(r-4.4-any)OPWeight_1.29.0.tgz(r-4.3-any)
OPWeight_1.29.0.tar.gz(r-4.5-noble)OPWeight_1.29.0.tar.gz(r-4.4-noble)
OPWeight_1.29.0.tgz(r-4.4-emscripten)OPWeight_1.29.0.tgz(r-4.3-emscripten)
OPWeight.pdf |OPWeight.html✨
OPWeight/json (API)
NEWS
# Install 'OPWeight' in R: |
install.packages('OPWeight', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mshasan/opweight/issues
On BioConductor:OPWeight-1.29.0(bioc 3.21)OPWeight-1.28.0(bioc 3.20)
immunooncologybiomedicalinformaticsmultiplecomparisonregressionrnaseqsnp
Last updated 3 months agofrom:1f5f472717. Checks:1 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 29 2024 |
R-4.5-win | NOTE | Dec 29 2024 |
R-4.5-linux | NOTE | Dec 29 2024 |
R-4.4-win | NOTE | Dec 29 2024 |
R-4.4-mac | NOTE | Dec 29 2024 |
R-4.3-win | NOTE | Dec 29 2024 |
R-4.3-mac | NOTE | Dec 29 2024 |
Exports:opwprob_rank_givenEffectprob_rank_givenEffect_approxprob_rank_givenEffect_exactprob_rank_givenEffect_simuweight_binaryweight_by_deltaweight_continuous
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrqvalueR6RColorBrewerRcppreshape2rlangscalesstringistringrtibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Perform Optimal Pvalue Weighting | opw |
Probability of rank of test given effect size | prob_rank_givenEffect |
Probability of rank of test given effect size by normal approximation | prob_rank_givenEffect_approx |
Probability of rank of test given effect size by exact method | prob_rank_givenEffect_exact |
Probability of rank of test given effect size by simulations | prob_rank_givenEffect_simu |
Weight for the Binary effect sizes | weight_binary |
Find sum of weights for the LaGrange multiplier | weight_by_delta |
Weight for the continuous effect sizes | weight_continuous |