Package: Melissa 1.23.0

C. A. Kapourani

Melissa: Bayesian clustering and imputationa of single cell methylomes

Melissa is a Baysian probabilistic model for jointly clustering and imputing single cell methylomes. This is done by taking into account local correlations via a Generalised Linear Model approach and global similarities using a mixture modelling approach.

Authors:C. A. Kapourani [aut, cre]

Melissa_1.23.0.tar.gz
Melissa_1.23.0.zip(r-4.5)Melissa_1.23.0.zip(r-4.4)Melissa_1.23.0.zip(r-4.3)
Melissa_1.23.0.tgz(r-4.5-any)Melissa_1.23.0.tgz(r-4.4-any)Melissa_1.23.0.tgz(r-4.3-any)
Melissa_1.23.0.tar.gz(r-4.5-noble)Melissa_1.23.0.tar.gz(r-4.4-noble)
Melissa_1.23.0.tgz(r-4.4-emscripten)Melissa_1.23.0.tgz(r-4.3-emscripten)
Melissa.pdf |Melissa.html
Melissa/json (API)
NEWS

# Install 'Melissa' in R:
install.packages('Melissa', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On BioConductor:Melissa-1.23.0(bioc 3.21)Melissa-1.22.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologydnamethylationgeneexpressiongeneregulationepigeneticsgeneticsclusteringfeatureextractionregressionrnaseqbayesiankeggsequencingcoveragesinglecell

4.90 score 7 scripts 204 downloads 4 mentions 13 exports 102 dependencies

Last updated 4 months agofrom:cffba8a662. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 16 2025
R-4.5-winOKFeb 16 2025
R-4.5-macOKFeb 16 2025
R-4.5-linuxOKFeb 16 2025
R-4.4-winOKFeb 16 2025
R-4.4-macOKFeb 16 2025
R-4.3-winOKFeb 16 2025
R-4.3-macOKFeb 16 2025

Exports:binarise_filescreate_melissa_data_objeval_cluster_performanceeval_imputation_performancefilter_by_coverage_across_cellsfilter_by_cpg_coveragefilter_by_variabilityimpute_met_filesimpute_test_metmelissamelissa_gibbspartition_datasetplot_melissa_profiles

Dependencies:askpassassertthatbase64encBiocGenericsBiocManagerBiocStylebitopsbookdownBPRMethbslibcachemcaToolsclassclicodacodetoolscolorspacecowplotcurldata.tabledigestdoParallele1071earthevaluatefansifarverfastmapfontawesomeforeachFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegplotsgtablegtoolshighrhtmltoolshttrIRangesisobanditeratorsjquerylibjsonlitekernlabKernSmoothknitrlabelinglatticelifecyclemagrittrMASSMatrixmatrixcalcMatrixModelsmclustmcmcMCMCpackmemoisemgcvmimemunsellmvtnormnlmeopensslpillarpkgconfigplotmoplotrixproxyquantregR6randomForestrappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownROCRS4VectorssassscalesSparseMsurvivalsystibbletinytextruncnormUCSC.utilsutf8vctrsviridisLitewithrxfunXVectoryaml

Process and filter scBS-seq data

Rendered fromprocess_files.Rmdusingknitr::rmarkdownon Feb 16 2025.

Last update: 2020-06-10
Started: 2019-02-15

Cluster and impute scBS-seq data using Melissa

Rendered fromrun_melissa.Rmdusingknitr::rmarkdownon Feb 16 2025.

Last update: 2020-06-10
Started: 2019-02-15