Package: MatrixQCvis 1.15.0

Thomas Naake

MatrixQCvis: Shiny-based interactive data-quality exploration for omics data

Data quality assessment is an integral part of preparatory data analysis to ensure sound biological information retrieval. We present here the MatrixQCvis package, which provides shiny-based interactive visualization of data quality metrics at the per-sample and per-feature level. It is broadly applicable to quantitative omics data types that come in matrix-like format (features x samples). It enables the detection of low-quality samples, drifts, outliers and batch effects in data sets. Visualizations include amongst others bar- and violin plots of the (count/intensity) values, mean vs standard deviation plots, MA plots, empirical cumulative distribution function (ECDF) plots, visualizations of the distances between samples, and multiple types of dimension reduction plots. Furthermore, MatrixQCvis allows for differential expression analysis based on the limma (moderated t-tests) and proDA (Wald tests) packages. MatrixQCvis builds upon the popular Bioconductor SummarizedExperiment S4 class and enables thus the facile integration into existing workflows. The package is especially tailored towards metabolomics and proteomics mass spectrometry data, but also allows to assess the data quality of other data types that can be represented in a SummarizedExperiment object.

Authors:Thomas Naake [aut, cre], Wolfgang Huber [aut]

MatrixQCvis_1.15.0.tar.gz
MatrixQCvis_1.15.0.zip(r-4.5)MatrixQCvis_1.15.0.zip(r-4.4)MatrixQCvis_1.15.0.zip(r-4.3)
MatrixQCvis_1.15.0.tgz(r-4.4-any)MatrixQCvis_1.15.0.tgz(r-4.3-any)
MatrixQCvis_1.15.0.tar.gz(r-4.5-noble)MatrixQCvis_1.15.0.tar.gz(r-4.4-noble)
MatrixQCvis_1.15.0.tgz(r-4.4-emscripten)MatrixQCvis_1.15.0.tgz(r-4.3-emscripten)
MatrixQCvis.pdf |MatrixQCvis.html
MatrixQCvis/json (API)
NEWS

# Install 'MatrixQCvis' in R:
install.packages('MatrixQCvis', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On BioConductor:MatrixQCvis-1.15.0(bioc 3.21)MatrixQCvis-1.14.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

visualizationshinyappsguiqualitycontroldimensionreductionmetabolomicsproteomicstranscriptomics

4.74 score 4 scripts 374 downloads 39 exports 178 dependencies

Last updated 3 months agofrom:ae918bf878. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 13 2025
R-4.5-winOKJan 13 2025
R-4.5-linuxOKJan 13 2025
R-4.4-winOKJan 13 2025
R-4.4-macOKJan 13 2025
R-4.3-winOKJan 13 2025
R-4.3-macOKJan 13 2025

Exports:barplotSamplesMeasuredMissingbatchCorrectionAssaycreateBoxplotcreateDfFeaturecvcvFeaturePlotdimensionReductiondimensionReductionPlotdistSampledistShinydriftPlotECDFexplVarextractCombfeaturePlothist_samplehist_sample_numhistFeaturehistFeatureCategoryhoeffDPlothoeffDValuesimputeAssayMAplotMAvaluesmeasuredCategorymosaicnormalizeAssaypermuteExplVarplotCVplotPCALoadingsplotPCAVarplotPCAVarPvaluesamplesMeasuredMissingshinyQCsumDistSampletblPCALoadingstransformAssayupsetCategoryvolcanoPlot

Dependencies:abindaffyaffyioannotateAnnotationDbiAnnotationHubaskpassbackportsbase64encBHBiobaseBiocFileCacheBiocGenericsBiocManagerBiocParallelBiocVersionBiostringsbitbit64blobbslibcachemcheckmatecirclizecliclueclustercodetoolscolorspacecommonmarkComplexHeatmapcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArraydigestdoParalleldplyrDTedgeRevaluateExperimentHubextraDistrfansifarverfastmapfilelockfontawesomeforeachforeignformatRFormulafsfutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesGetoptLongggplot2GlobalOptionsgluegmmgridExtragtableherehighrHmischtmlTablehtmltoolshtmlwidgetshttpuvhttrimputeimputeLCMDIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglambda.rlaterlatticelazyevallifecyclelimmalocfitmagrittrmarkdownMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellmvtnormnlmennetnormopensslpcaMethodspillarpkgconfigplogrplotlyplyrpngpreprocessCoreproDApromisespurrrR6rappdirsRColorBrewerRcppRcppEigenRcppTOMLreticulaterjsonrlangrmarkdownrpartrprojrootRSpectraRSQLiterstudioapiRtsneS4ArraysS4VectorssandwichsassscalesshapeshinyshinydashboardshinyhelpershinyjssnowsourcetoolsSparseArraystatmodstringistringrSummarizedExperimentsurvivalsvasystibbletidyrtidyselecttinytextmvtnormUCSC.utilsumapUpSetRutf8vctrsviridisviridisLitevsnwithrxfunXMLxtableXVectoryamlzoo

MatrixQCvis: shiny-based interactive data quality exploration of omics data

Rendered fromMatrixQCvis.Rmdusingknitr::rmarkdownon Jan 13 2025.

Last update: 2024-06-27
Started: 2021-03-11

Readme and manuals

Help Manual

Help pageTopics
Barplot of number of measured/missing features of samplesbarplotSamplesMeasuredMissing
Remove batch effects from (count/intensity) values of a 'SummarizedExperiment'batchCorrectionAssay
Create a boxplot of (count/intensity) values per samplecreateBoxplot
Create data frame of (count/intensity) values for a selected feature along data processing stepscreateDfFeature
Calculate coefficient of variationcv
Plot of feature-wise coefficient of variation valuescvFeaturePlot
Dimensionality reduction with dimensionReduction methods PCA, PCoA, NMDS, UMAP and tSNEdimensionReduction
Plot the coordinates from 'dimensionReduction' valuesdimensionReductionPlot
Create a heatmap using distance information between samplesdistSample
Create distance matrix from numerical matrixdistShiny
Plot the trend line for aggregated valuesdriftPlot
Create ECDF plot of a sample against a referenceECDF
Retrieve the explained variance for each principal component (PCA) or axis (PCoA)explVar
Obtain the features that are present in a specified setextractComb
Create a plot of (count/intensity) values over the samplesfeaturePlot
Plot a histogram of the number of a categoryhist_sample
Return the number of a categoryhist_sample_num
Histogram for measured value per featurehistFeature
Histogram of features per sample typehistFeatureCategory
Create a plot from a list of Hoeffding's D valueshoeffDPlot
Create values of Hoeffding's D statistics from M and A valueshoeffDValues
Impute missing values in a 'matrix'imputeAssay
Create a MA plotMAplot
Create values (M and A) for MA plotMAvalues
Obtain the number of measured intensities per sample typemeasuredCategory
Mosaic plot for two factors in colData(se)mosaic
Normalize a data sets (reduce technical sample effects)normalizeAssay
Permute the expression values and retrieve the explained variancepermuteExplVar
Plot CV valuesplotCV
Plot for PCA loadings of featuresplotPCALoadings
Plot of explained variance against the principal componentsplotPCAVar
Plot p-values for the significance of principal componentsplotPCAVarPvalue
Create tibble containing number of measured/missing features of samplessamplesMeasuredMissing
Shiny application for initial QC exploration of -omics data setsshinyQC
Plot the sum of distances to other samplessumDistSample
Return tibble with PCA loadings for featurestblPCALoadings
Transform the (count/intensity) values of a 'data.frame', 'tbl' or 'matrix'transformAssay
UpSet plot to display measures values across sample typesupsetCategory
Volcano plot of fold changes/differences against p-valuesvolcanoPlot