Package: MLInterfaces 1.87.0

Vincent Carey

MLInterfaces: Uniform interfaces to R machine learning procedures for data in Bioconductor containers

This package provides uniform interfaces to machine learning code for data in R and Bioconductor containers.

Authors:Vincent Carey [cre, aut], Jess Mar [aut], Jason Vertrees [ctb], Laurent Gatto [ctb], Phylis Atieno [ctb]

MLInterfaces_1.87.0.tar.gz
MLInterfaces_1.87.0.zip(r-4.5)MLInterfaces_1.87.0.zip(r-4.4)MLInterfaces_1.87.0.zip(r-4.3)
MLInterfaces_1.87.0.tgz(r-4.4-any)MLInterfaces_1.87.0.tgz(r-4.3-any)
MLInterfaces_1.87.0.tar.gz(r-4.5-noble)MLInterfaces_1.87.0.tar.gz(r-4.4-noble)
MLInterfaces_1.87.0.tgz(r-4.4-emscripten)MLInterfaces_1.87.0.tgz(r-4.3-emscripten)
MLInterfaces.pdf |MLInterfaces.html
MLInterfaces/json (API)
NEWS

# Install 'MLInterfaces' in R:
install.packages('MLInterfaces', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • brennan_2013_tabS7exc - Clinical characterization of 158 GBM samples from https://doi.org/10.1016/j.cell.2013.09.034 supp table S7

On BioConductor:MLInterfaces-1.87.0(bioc 3.21)MLInterfaces-1.86.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

classificationclustering

7.62 score 6 packages 78 scripts 878 downloads 10 mentions 143 exports 114 dependencies

Last updated 2 months agofrom:7982d3a3ce. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 30 2024
R-4.5-winWARNINGNov 30 2024
R-4.5-linuxWARNINGNov 30 2024
R-4.4-winWARNINGNov 30 2024
R-4.4-macWARNINGNov 30 2024
R-4.3-winWARNINGNov 30 2024
R-4.3-macWARNINGNov 30 2024

Exports:.accuracy.F1.fn.fp.macroF1.precision.recall.requireCachedGenerics.S3MethodsClasses.sensitivity.specificity.tn.tpaccadaIbaggingIbalKfold.xvspecBgbmIblackboostIconfuMatconfuTabcverrsDABdlda2dldaIes2dfF1fnfpfs.absTfs.probTfs.topVariancefsHistorygbm2getConvertergetDistgetGridgetVarImpglmI.logistichclustConverterhclustIhclustWidgetkmeansConverterkmeansIknn.cv2knn.cvIknn2knnIksvm2ksvmIldaIldaI.predParmslearnerIn3DlvqlvqImacroF1makeClusteringSchemamakeConfuMatmakeLearnerSchemamapPSvecmkfmlaMLearnmlearnWidgetMLIConverter.BgbmMLIConverter.blackboostMLIConverter.dldaMLIConverter.knnMLIConverter.knncvMLIConverter.ksvmMLIConverter.ldaPredMethMLIConverter.logisticMLIConverter.naiveBayesMLIConverter.nnetMLIConverter.plsdaMLIConverter.RABMLIConverter.randomForestMLIConverter.rpartMLIConverter.selftestingMLIConverter.sldaMLIConverter.svmMLIConverterListEl.classMLIConverterPredType.classMLIPredicter.knnMLIPredicter.ksvmMLIPredicter.naiveBayesMLIPredicter.nnetMLIPredicter.plsdaMLIPredicter.randomForestMLIPredicter.svmnaAs0naiveBayesInnetIpamConverterpamIpartPlotplanarPlotplanarPlot2plotOneplsda2plsdaIplspinDFplspinHcubeprecisionPredictpredict.classifierOutputpredict.dlda2predict.gbm2predict.knn.cv2predict.knn2predict.lvqpredict.RABpredictionspredScorepredScoresprojectLearnerToGridqdaIrabRABRAB4esRABIrandomForestIrecallreportRObjectrpartIse2dfsensitivitysldaIspecificitystandardMLIConvertersvm2svmItestPredictionstestScorestntonptptrainIndtrainPredictionstrainScoresxxvalLoopxvalSpec

Dependencies:abindannotateAnnotationDbiaskpassassertthatbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemclasscliclustercommonmarkcpp11crayoncrosstalkcurlDBIDelayedArrayDEoptimRdigestdiptestdplyrevaluatefansifastmapflexmixfontawesomefpcfsgbmgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggvisgluegtoolshighrhtmltoolshtmlwidgetshttpuvhttrhwriterigraphIRangesjquerylibjsonliteKEGGRESTkernlabknitrlaterlatticelazyevallifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemimemlbenchmodeltoolsnnetopensslpillarpkgconfigplogrplspngprabcluspromisesR6rappdirsRColorBrewerRcpprlangrmarkdownrobustbaserpartRSQLiteS4ArraysS4VectorssasssfsmiscshinysourcetoolsSparseArraySummarizedExperimentsurvivalsysthreejstibbletidyselecttinytexUCSC.utilsutf8vctrswithrxfunXMLxtableXVectoryamlzlibbioc

A machine learning tutorial tutorial: applications of the Bioconductor MLInterfaces package to gene expression data

Rendered fromMLprac2_2.Rmdusingknitr::rmarkdownon Nov 30 2024.

Last update: 2022-11-02
Started: 2022-11-02

MLInterfaces 2.0 -- a new design

Rendered fromMLint_devel.Rmdusingknitr::rmarkdownon Nov 30 2024.

Last update: 2022-11-02
Started: 2022-11-02

MLInterfaces Computer Cluster

Rendered fromxvalComputerClusters.Rnwusingutils::Sweaveon Nov 30 2024.

Last update: 2013-11-01
Started: 2013-11-01

Readme and manuals

Help Manual

Help pageTopics
generate a partition function for cross-validation, where the partitions are approximately balanced with respect to the distribution of a response variablebalKfold.xvspec
Clinical characterization of 158 GBM samples from https://doi.org/10.1016/j.cell.2013.09.034 supp table S7brennan_2013_tabS7exc
Class "classifierOutput"classifierOutput-class fsHistory,classifierOutput-method predictions predictions,classifierOutput-method predScore predScore,classifierOutput-method predScores predScores,classifierOutput-method RObject RObject,classifierOutput-method show,classifierOutput-method testPredictions testPredictions,classifierOutput-method testScores testScores,classifierOutput-method trainInd trainInd,classifierOutput-method trainPredictions trainPredictions,classifierOutput-method trainScores trainScores,classifierOutput-method
container for clustering outputs in uniform structureclusteringOutput-class clusteringSchema-class getConverter getConverter,clusteringSchema-method getDist getDist,clusteringSchema-method plot,clusteringOutput,ANY-method prcomp-class prcompObj-class RObject,clusteringOutput-method show,clusteringOutput-method show,clusteringSchema-method silhouette-class
Compute the confusion matrix for a classifier.confuMat confuMat,classifierOutput,character-method confuMat,classifierOutput,missing-method confuMat,classifierOutput,numeric-method confuMat,classifierOutput-method confuMat-methods
Compute confusion tables for a confusion matrix.confuTab
support for feature selection in cross-validationfs.absT fs.probT fs.topVariance
extract history of feature selection for a cross-validated machine learnerfsHistory
shiny-oriented GUI for cluster or classifier explorationhclustWidget mlearnWidget
Class "learnerSchema" - convey information on a machine learning function to the MLearn wrapperlearnerSchema-class nonstandardLearnerSchema-class show,learnerSchema-method
revised MLearn interface for machine learningadaI baggingI BgbmI blackboostI dlda dlda2 dldaI gbm2 glmI.logistic hclustI kmeansI knn.cv2 knn.cvI knn2 knnI ksvm2 ksvmI ldaI ldaI.predParms lvq lvqI makeLearnerSchema MLearn MLearn,formula,data.frame,clusteringSchema,ANY-method MLearn,formula,data.frame,learnerSchema,numeric-method MLearn,formula,data.frame,learnerSchema,xvalSpec-method MLearn,formula,ExpressionSet,character,numeric-method MLearn,formula,ExpressionSet,learnerSchema,numeric-method MLearn,formula,ExpressionSet,learnerSchema,xvalSpec-method MLearn,formula,SummarizedExperiment,learnerSchema,numeric-method MLearn_new naiveBayesI nnetI pamI plotXvalRDA plsda2 plsdaI qdaI rab RABI randomForestI rpartI sldaI standardMLIConverter svm2 svmI
MLInterfaces infrastructureclassifOutput clustOutput cverrs es2df getGrid getGrid,data.frame-method getGrid,ExpressionSet-method groupIndex hclustConverter kmeansConverter makeClusteringSchema makeConfuMat mapPSvec membMat MLIConverter.Bgbm MLIConverter.blackboost MLIConverter.dlda MLIConverter.knn MLIConverter.knncv MLIConverter.ksvm MLIConverter.ldaPredMeth MLIConverter.logistic MLIConverter.naiveBayes MLIConverter.nnet MLIConverter.plsda MLIConverter.RAB MLIConverter.randomForest MLIConverter.rpart MLIConverter.selftesting MLIConverter.slda MLIConverter.svm MLIConverterListEl.class MLIConverterPredType.class MLIPredicter.knn MLIPredicter.ksvm MLIPredicter.naiveBayes MLIPredicter.nnet MLIPredicter.plsda MLIPredicter.randomForest MLIPredicter.svm MLLabel MLOutput MLScore naAs0 pamConverter partPlot planarPlot2 plspinDF predict.dlda2 predict.gbm2 predict.knn.cv2 predict.knn2 predict.lvq predict.RAB probArray probMat qualScore se2df silhouetteVec SOMBout somout x
Assessing classifier performanceacc acc,table-method F1 F1,table-method fn fn,table-method fp fp,table-method macroF1 macroF1,classifierOutput,character-method macroF1,classifierOutput,missing-method macroF1,classifierOutput,numeric-method macroF1,numeric,numeric-method macroF1,table,missing-method macroF1-methods precision precision,classifierOutput,character-method precision,classifierOutput,missing-method precision,classifierOutput,numeric-method precision,table,missing-method precision-methods recall recall,classifierOutput,character-method recall,classifierOutput,missing-method recall,classifierOutput,numeric-method recall,table,missing-method recall-methods sensitivity sensitivity,classifierOutput,character-method sensitivity,classifierOutput,missing-method sensitivity,classifierOutput,numeric-method sensitivity,table,missing-method sensitivity-methods specificity specificity,table-method tn tn,table-method tp tp,table-method
Methods for Function planarPlot in Package `MLInterfaces'planarPlot planarPlot,classifierOutput,data.frame,character-method planarPlot,classifierOutput,ExpressionSet,character-method planarPlot-methods
shiny app for interactive 3D visualization of mlbench hypercubeplspinHcube
Predict method for 'classifierOutput' objectspredict.classifierOutput
Class '"projectedLearner"'learnerIn3D learnerIn3D,projectedLearner-method plot,projectedLearner,ANY-method plotOne plotOne,projectedLearner-method projectedLearner-class show,projectedLearner-method
create learned tesselation of feature space after PC transformationprojectLearnerToGrid
real adaboost (Friedman et al)DAB mkfmla Predict Predict,daboostCont-method Predict,raboostCont-method RAB RAB4es tonp
Class "raboostCont" ~~~daboostCont-class raboostCont-class show,raboostCont-method
Class "varImpStruct" - collect data on variable importance from various machine learning methodsgetVarImp getVarImp,classifierOutput,logical-method getVarImp,classifierOutput,missing-method getVarImp,classifOutput,logical-method plot plot,varImpStruct,ANY-method plot,varImpStruct-method report report,varImpStruct-method show,varImpStruct-method varImpStruct-class
Cross-validation in clustered computing environmentsxvalLoop xvalLoop,ANY-method
container for information specifying a cross-validated machine learning exercisexvalSpec xvalSpec-class