Package: MLInterfaces 1.87.0
MLInterfaces: Uniform interfaces to R machine learning procedures for data in Bioconductor containers
This package provides uniform interfaces to machine learning code for data in R and Bioconductor containers.
Authors:
MLInterfaces_1.87.0.tar.gz
MLInterfaces_1.87.0.zip(r-4.5)MLInterfaces_1.87.0.zip(r-4.4)MLInterfaces_1.87.0.zip(r-4.3)
MLInterfaces_1.87.0.tgz(r-4.4-any)MLInterfaces_1.87.0.tgz(r-4.3-any)
MLInterfaces_1.87.0.tar.gz(r-4.5-noble)MLInterfaces_1.87.0.tar.gz(r-4.4-noble)
MLInterfaces_1.87.0.tgz(r-4.4-emscripten)MLInterfaces_1.87.0.tgz(r-4.3-emscripten)
MLInterfaces.pdf |MLInterfaces.html✨
MLInterfaces/json (API)
NEWS
# Install 'MLInterfaces' in R: |
install.packages('MLInterfaces', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- brennan_2013_tabS7exc - Clinical characterization of 158 GBM samples from https://doi.org/10.1016/j.cell.2013.09.034 supp table S7
On BioConductor:MLInterfaces-1.87.0(bioc 3.21)MLInterfaces-1.86.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 22 days agofrom:7982d3a3ce. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 31 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:.accuracy.F1.fn.fp.macroF1.precision.recall.requireCachedGenerics.S3MethodsClasses.sensitivity.specificity.tn.tpaccadaIbaggingIbalKfold.xvspecBgbmIblackboostIconfuMatconfuTabcverrsDABdlda2dldaIes2dfF1fnfpfs.absTfs.probTfs.topVariancefsHistorygbm2getConvertergetDistgetGridgetVarImpglmI.logistichclustConverterhclustIhclustWidgetkmeansConverterkmeansIknn.cv2knn.cvIknn2knnIksvm2ksvmIldaIldaI.predParmslearnerIn3DlvqlvqImacroF1makeClusteringSchemamakeConfuMatmakeLearnerSchemamapPSvecmkfmlaMLearnmlearnWidgetMLIConverter.BgbmMLIConverter.blackboostMLIConverter.dldaMLIConverter.knnMLIConverter.knncvMLIConverter.ksvmMLIConverter.ldaPredMethMLIConverter.logisticMLIConverter.naiveBayesMLIConverter.nnetMLIConverter.plsdaMLIConverter.RABMLIConverter.randomForestMLIConverter.rpartMLIConverter.selftestingMLIConverter.sldaMLIConverter.svmMLIConverterListEl.classMLIConverterPredType.classMLIPredicter.knnMLIPredicter.ksvmMLIPredicter.naiveBayesMLIPredicter.nnetMLIPredicter.plsdaMLIPredicter.randomForestMLIPredicter.svmnaAs0naiveBayesInnetIpamConverterpamIpartPlotplanarPlotplanarPlot2plotOneplsda2plsdaIplspinDFplspinHcubeprecisionPredictpredict.classifierOutputpredict.dlda2predict.gbm2predict.knn.cv2predict.knn2predict.lvqpredict.RABpredictionspredScorepredScoresprojectLearnerToGridqdaIrabRABRAB4esRABIrandomForestIrecallreportRObjectrpartIse2dfsensitivitysldaIspecificitystandardMLIConvertersvm2svmItestPredictionstestScorestntonptptrainIndtrainPredictionstrainScoresxxvalLoopxvalSpec
Dependencies:abindannotateAnnotationDbiaskpassassertthatbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemclasscliclustercommonmarkcpp11crayoncrosstalkcurlDBIDelayedArrayDEoptimRdigestdiptestdplyrevaluatefansifastmapflexmixfontawesomefpcfsgbmgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggvisgluegtoolshighrhtmltoolshtmlwidgetshttpuvhttrhwriterigraphIRangesjquerylibjsonliteKEGGRESTkernlabknitrlaterlatticelazyevallifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemimemlbenchmodeltoolsnnetopensslpillarpkgconfigplogrplspngprabcluspromisesR6rappdirsRColorBrewerRcpprlangrmarkdownrobustbaserpartRSQLiteS4ArraysS4VectorssasssfsmiscshinysourcetoolsSparseArraySummarizedExperimentsurvivalsysthreejstibbletidyselecttinytexUCSC.utilsutf8vctrswithrxfunXMLxtableXVectoryamlzlibbioc
A machine learning tutorial tutorial: applications of the Bioconductor MLInterfaces package to gene expression data
Rendered fromMLprac2_2.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2022-11-02
Started: 2022-11-02
MLInterfaces 2.0 -- a new design
Rendered fromMLint_devel.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2022-11-02
Started: 2022-11-02
MLInterfaces Computer Cluster
Rendered fromxvalComputerClusters.Rnw
usingutils::Sweave
on Oct 31 2024.Last update: 2013-11-01
Started: 2013-11-01
Readme and manuals
Help Manual
Help page | Topics |
---|---|
generate a partition function for cross-validation, where the partitions are approximately balanced with respect to the distribution of a response variable | balKfold.xvspec |
Clinical characterization of 158 GBM samples from https://doi.org/10.1016/j.cell.2013.09.034 supp table S7 | brennan_2013_tabS7exc |
Class "classifierOutput" | classifierOutput-class fsHistory,classifierOutput-method predictions predictions,classifierOutput-method predScore predScore,classifierOutput-method predScores predScores,classifierOutput-method RObject RObject,classifierOutput-method show,classifierOutput-method testPredictions testPredictions,classifierOutput-method testScores testScores,classifierOutput-method trainInd trainInd,classifierOutput-method trainPredictions trainPredictions,classifierOutput-method trainScores trainScores,classifierOutput-method |
container for clustering outputs in uniform structure | clusteringOutput-class clusteringSchema-class getConverter getConverter,clusteringSchema-method getDist getDist,clusteringSchema-method plot,clusteringOutput,ANY-method prcomp-class prcompObj-class RObject,clusteringOutput-method show,clusteringOutput-method show,clusteringSchema-method silhouette-class |
Compute the confusion matrix for a classifier. | confuMat confuMat,classifierOutput,character-method confuMat,classifierOutput,missing-method confuMat,classifierOutput,numeric-method confuMat,classifierOutput-method confuMat-methods |
Compute confusion tables for a confusion matrix. | confuTab |
support for feature selection in cross-validation | fs.absT fs.probT fs.topVariance |
extract history of feature selection for a cross-validated machine learner | fsHistory |
shiny-oriented GUI for cluster or classifier exploration | hclustWidget mlearnWidget |
Class "learnerSchema" - convey information on a machine learning function to the MLearn wrapper | learnerSchema-class nonstandardLearnerSchema-class show,learnerSchema-method |
revised MLearn interface for machine learning | adaI baggingI BgbmI blackboostI dlda dlda2 dldaI gbm2 glmI.logistic hclustI kmeansI knn.cv2 knn.cvI knn2 knnI ksvm2 ksvmI ldaI ldaI.predParms lvq lvqI makeLearnerSchema MLearn MLearn,formula,data.frame,clusteringSchema,ANY-method MLearn,formula,data.frame,learnerSchema,numeric-method MLearn,formula,data.frame,learnerSchema,xvalSpec-method MLearn,formula,ExpressionSet,character,numeric-method MLearn,formula,ExpressionSet,learnerSchema,numeric-method MLearn,formula,ExpressionSet,learnerSchema,xvalSpec-method MLearn,formula,SummarizedExperiment,learnerSchema,numeric-method MLearn_new naiveBayesI nnetI pamI plotXvalRDA plsda2 plsdaI qdaI rab RABI randomForestI rpartI sldaI standardMLIConverter svm2 svmI |
MLInterfaces infrastructure | classifOutput clustOutput cverrs es2df getGrid getGrid,data.frame-method getGrid,ExpressionSet-method groupIndex hclustConverter kmeansConverter makeClusteringSchema makeConfuMat mapPSvec membMat MLIConverter.Bgbm MLIConverter.blackboost MLIConverter.dlda MLIConverter.knn MLIConverter.knncv MLIConverter.ksvm MLIConverter.ldaPredMeth MLIConverter.logistic MLIConverter.naiveBayes MLIConverter.nnet MLIConverter.plsda MLIConverter.RAB MLIConverter.randomForest MLIConverter.rpart MLIConverter.selftesting MLIConverter.slda MLIConverter.svm MLIConverterListEl.class MLIConverterPredType.class MLIPredicter.knn MLIPredicter.ksvm MLIPredicter.naiveBayes MLIPredicter.nnet MLIPredicter.plsda MLIPredicter.randomForest MLIPredicter.svm MLLabel MLOutput MLScore naAs0 pamConverter partPlot planarPlot2 plspinDF predict.dlda2 predict.gbm2 predict.knn.cv2 predict.knn2 predict.lvq predict.RAB probArray probMat qualScore se2df silhouetteVec SOMBout somout x |
Assessing classifier performance | acc acc,table-method F1 F1,table-method fn fn,table-method fp fp,table-method macroF1 macroF1,classifierOutput,character-method macroF1,classifierOutput,missing-method macroF1,classifierOutput,numeric-method macroF1,numeric,numeric-method macroF1,table,missing-method macroF1-methods precision precision,classifierOutput,character-method precision,classifierOutput,missing-method precision,classifierOutput,numeric-method precision,table,missing-method precision-methods recall recall,classifierOutput,character-method recall,classifierOutput,missing-method recall,classifierOutput,numeric-method recall,table,missing-method recall-methods sensitivity sensitivity,classifierOutput,character-method sensitivity,classifierOutput,missing-method sensitivity,classifierOutput,numeric-method sensitivity,table,missing-method sensitivity-methods specificity specificity,table-method tn tn,table-method tp tp,table-method |
Methods for Function planarPlot in Package `MLInterfaces' | planarPlot planarPlot,classifierOutput,data.frame,character-method planarPlot,classifierOutput,ExpressionSet,character-method planarPlot-methods |
shiny app for interactive 3D visualization of mlbench hypercube | plspinHcube |
Predict method for 'classifierOutput' objects | predict.classifierOutput |
Class '"projectedLearner"' | learnerIn3D learnerIn3D,projectedLearner-method plot,projectedLearner,ANY-method plotOne plotOne,projectedLearner-method projectedLearner-class show,projectedLearner-method |
create learned tesselation of feature space after PC transformation | projectLearnerToGrid |
real adaboost (Friedman et al) | DAB mkfmla Predict Predict,daboostCont-method Predict,raboostCont-method RAB RAB4es tonp |
Class "raboostCont" ~~~ | daboostCont-class raboostCont-class show,raboostCont-method |
Class "varImpStruct" - collect data on variable importance from various machine learning methods | getVarImp getVarImp,classifierOutput,logical-method getVarImp,classifierOutput,missing-method getVarImp,classifOutput,logical-method plot plot,varImpStruct,ANY-method plot,varImpStruct-method report report,varImpStruct-method show,varImpStruct-method varImpStruct-class |
Cross-validation in clustered computing environments | xvalLoop xvalLoop,ANY-method |
container for information specifying a cross-validated machine learning exercise | xvalSpec xvalSpec-class |