Package: MCbiclust 1.31.0

Robert Bentham

MCbiclust: Massive correlating biclusters for gene expression data and associated methods

Custom made algorithm and associated methods for finding, visualising and analysing biclusters in large gene expression data sets. Algorithm is based on with a supplied gene set of size n, finding the maximum strength correlation matrix containing m samples from the data set.

Authors:Robert Bentham

MCbiclust_1.31.0.tar.gz
MCbiclust_1.31.0.zip(r-4.5)MCbiclust_1.31.0.zip(r-4.4)MCbiclust_1.31.0.zip(r-4.3)
MCbiclust_1.31.0.tgz(r-4.4-any)MCbiclust_1.31.0.tgz(r-4.3-any)
MCbiclust_1.31.0.tar.gz(r-4.5-noble)MCbiclust_1.31.0.tar.gz(r-4.4-noble)
MCbiclust_1.31.0.tgz(r-4.4-emscripten)MCbiclust_1.31.0.tgz(r-4.3-emscripten)
MCbiclust.pdf |MCbiclust.html
MCbiclust/json (API)

# Install 'MCbiclust' in R:
install.packages('MCbiclust', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:MCbiclust-1.29.0(bioc 3.20)MCbiclust-1.28.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologyclusteringmicroarraystatisticalmethodsoftwarernaseqgeneexpression

4.18 score 2 scripts 224 downloads 1 mentions 14 exports 125 dependencies

Last updated 23 days agofrom:990c62b8e3. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:CorScoreCalcCVEvalCVPlotFindSeedForkClassifierGOEnrichmentAnalysisHclustGenesHiCorMultiSampleSortPrepPC1AlignPC1VecFunPointScoreCalcSampleSortSilhouetteClustGroupsThresholdBic

Dependencies:AnnotationDbiaskpassbackportsbase64encBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64blobbslibcachemcheckmatecliclustercodetoolscolorspacecpp11crayoncurldata.tableDBIdigestdoParalleldplyrdynamicTreeCutevaluatefansifarverfastclusterfastmapfontawesomeforcatsforeachforeignformatRFormulafsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGGallyggplot2ggstatsglueGO.dbgridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetshttrimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglambda.rlatticelifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetopensslorg.Hs.eg.dbpatchworkpillarpkgconfigplogrplyrpngpreprocessCoreprettyunitsprogresspurrrR6rappdirsRColorBrewerRcpprlangrmarkdownrpartRSQLiterstudioapiS4VectorssassscalessnowstringistringrsurvivalsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsviridisviridisLiteWGCNAwithrxfunXVectoryamlzlibbioc

Introduction to MCbiclust

Rendered fromMCbiclust_vignette.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2024-02-11
Started: 2016-08-17