Package: MCbiclust 1.31.0

Robert Bentham

MCbiclust: Massive correlating biclusters for gene expression data and associated methods

Custom made algorithm and associated methods for finding, visualising and analysing biclusters in large gene expression data sets. Algorithm is based on with a supplied gene set of size n, finding the maximum strength correlation matrix containing m samples from the data set.

Authors:Robert Bentham

MCbiclust_1.31.0.tar.gz
MCbiclust_1.31.0.zip(r-4.5)MCbiclust_1.31.0.zip(r-4.4)MCbiclust_1.31.0.zip(r-4.3)
MCbiclust_1.31.0.tgz(r-4.4-any)MCbiclust_1.31.0.tgz(r-4.3-any)
MCbiclust_1.31.0.tar.gz(r-4.5-noble)MCbiclust_1.31.0.tar.gz(r-4.4-noble)
MCbiclust_1.31.0.tgz(r-4.4-emscripten)MCbiclust_1.31.0.tgz(r-4.3-emscripten)
MCbiclust.pdf |MCbiclust.html
MCbiclust/json (API)

# Install 'MCbiclust' in R:
install.packages('MCbiclust', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:MCbiclust-1.31.0(bioc 3.21)MCbiclust-1.30.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologyclusteringmicroarraystatisticalmethodsoftwarernaseqgeneexpression

4.18 score 2 scripts 236 downloads 1 mentions 14 exports 124 dependencies

Last updated 3 months agofrom:990c62b8e3. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-winOKDec 31 2024
R-4.5-linuxOKDec 29 2024
R-4.4-winOKDec 31 2024
R-4.4-macOKDec 29 2024
R-4.3-winOKDec 31 2024
R-4.3-macOKDec 29 2024

Exports:CorScoreCalcCVEvalCVPlotFindSeedForkClassifierGOEnrichmentAnalysisHclustGenesHiCorMultiSampleSortPrepPC1AlignPC1VecFunPointScoreCalcSampleSortSilhouetteClustGroupsThresholdBic

Dependencies:AnnotationDbiaskpassbackportsbase64encBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64blobbslibcachemcheckmatecliclustercodetoolscolorspacecpp11crayoncurldata.tableDBIdigestdoParalleldplyrdynamicTreeCutevaluatefansifarverfastclusterfastmapfontawesomeforcatsforeachforeignformatRFormulafsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGGallyggplot2ggstatsglueGO.dbgridExtragtablehighrHmischmshtmlTablehtmltoolshtmlwidgetshttrimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglambda.rlatticelifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetopensslorg.Hs.eg.dbpatchworkpillarpkgconfigplogrplyrpngpreprocessCoreprettyunitsprogresspurrrR6rappdirsRColorBrewerRcpprlangrmarkdownrpartRSQLiterstudioapiS4VectorssassscalessnowstringistringrsurvivalsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsviridisviridisLiteWGCNAwithrxfunXVectoryaml

Introduction to MCbiclust

Rendered fromMCbiclust_vignette.Rmdusingknitr::rmarkdownon Dec 29 2024.

Last update: 2024-02-11
Started: 2016-08-17