Package: MAI 1.13.0

Jonathan Dekermanjian

MAI: Mechanism-Aware Imputation

A two-step approach to imputing missing data in metabolomics. Step 1 uses a random forest classifier to classify missing values as either Missing Completely at Random/Missing At Random (MCAR/MAR) or Missing Not At Random (MNAR). MCAR/MAR are combined because it is often difficult to distinguish these two missing types in metabolomics data. Step 2 imputes the missing values based on the classified missing mechanisms, using the appropriate imputation algorithms. Imputation algorithms tested and available for MCAR/MAR include Bayesian Principal Component Analysis (BPCA), Multiple Imputation No-Skip K-Nearest Neighbors (Multi_nsKNN), and Random Forest. Imputation algorithms tested and available for MNAR include nsKNN and a single imputation approach for imputation of metabolites where left-censoring is present.

Authors:Jonathan Dekermanjian [aut, cre], Elin Shaddox [aut], Debmalya Nandy [aut], Debashis Ghosh [aut], Katerina Kechris [aut]

MAI_1.13.0.tar.gz
MAI_1.13.0.zip(r-4.5)MAI_1.13.0.zip(r-4.4)MAI_1.13.0.zip(r-4.3)
MAI_1.13.0.tgz(r-4.4-any)MAI_1.13.0.tgz(r-4.3-any)
MAI_1.13.0.tar.gz(r-4.5-noble)MAI_1.13.0.tar.gz(r-4.4-noble)
MAI_1.13.0.tgz(r-4.4-emscripten)MAI_1.13.0.tgz(r-4.3-emscripten)
MAI.pdf |MAI.html
MAI/json (API)

# Install 'MAI' in R:
install.packages('MAI', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kechrislab/mai/issues

Datasets:

On BioConductor:MAI-1.11.0(bioc 3.20)MAI-1.10.0(bioc 3.19)

softwaremetabolomicsstatisticalmethodclassificationimputation-methodsmachine-learningmissing-data

5.00 score 2 stars 6 scripts 147 downloads 5 mentions 1 exports 164 dependencies

Last updated 23 days agofrom:300bbe05ae. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winNOTEOct 30 2024
R-4.5-linuxNOTEOct 30 2024
R-4.4-winNOTEOct 30 2024
R-4.4-macNOTEOct 31 2024
R-4.3-winNOTEOct 31 2024
R-4.3-macNOTEOct 31 2024

Exports:MAI

Dependencies:abindaskpassbackportsbase64encBiobaseBiocGenericsbitbit64blobbroombslibcachemcallrcaretcellrangerclassclicliprclockcodetoolscolorspaceconflictedcpp11crayoncurldata.tableDBIdbplyrDelayedArraydiagramdigestdoParalleldoRNGdplyrdtplyre1071evaluatefansifarverfastmapfontawesomeforcatsforeachfsfuturefuture.applygarglegenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2globalsgluegoogledrivegooglesheets4gowergtablehardhathavenhighrhmshtmltoolshttridsipredIRangesisobanditeratorsitertoolsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemissForestModelMetricsmodelrmunsellnlmennetnumDerivopensslparallellypcaMethodspillarpkgconfigplyrprettyunitspROCprocessxprodlimprogressprogressrproxypspurrrR6raggrandomForestrappdirsRColorBrewerRcppreadrreadxlrecipesrematchrematch2reprexreshape2rlangrmarkdownrngtoolsrpartrstudioapirvestS4ArraysS4VectorssassscalesselectrshapeSparseArraySQUAREMstringistringrSummarizedExperimentsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextzdbUCSC.utilsutf8uuidvctrsviridisLitevroomwithrxfunxml2XVectoryamlzlibbioc

Utilizing Mechanism-Aware Imputation (MAI)

Rendered fromUsingMAI.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2022-08-10
Started: 2021-07-20