Package: MAI 1.13.0
Jonathan Dekermanjian
MAI: Mechanism-Aware Imputation
A two-step approach to imputing missing data in metabolomics. Step 1 uses a random forest classifier to classify missing values as either Missing Completely at Random/Missing At Random (MCAR/MAR) or Missing Not At Random (MNAR). MCAR/MAR are combined because it is often difficult to distinguish these two missing types in metabolomics data. Step 2 imputes the missing values based on the classified missing mechanisms, using the appropriate imputation algorithms. Imputation algorithms tested and available for MCAR/MAR include Bayesian Principal Component Analysis (BPCA), Multiple Imputation No-Skip K-Nearest Neighbors (Multi_nsKNN), and Random Forest. Imputation algorithms tested and available for MNAR include nsKNN and a single imputation approach for imputation of metabolites where left-censoring is present.
Authors:
MAI_1.13.0.tar.gz
MAI_1.13.0.zip(r-4.5)MAI_1.13.0.zip(r-4.4)MAI_1.13.0.zip(r-4.3)
MAI_1.13.0.tgz(r-4.4-any)MAI_1.13.0.tgz(r-4.3-any)
MAI_1.13.0.tar.gz(r-4.5-noble)MAI_1.13.0.tar.gz(r-4.4-noble)
MAI_1.13.0.tgz(r-4.4-emscripten)MAI_1.13.0.tgz(r-4.3-emscripten)
MAI.pdf |MAI.html✨
MAI/json (API)
# Install 'MAI' in R: |
install.packages('MAI', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kechrislab/mai/issues
- untargeted_LCMS_data - Example data set containing missing values
On BioConductor:MAI-1.11.0(bioc 3.20)MAI-1.10.0(bioc 3.19)
softwaremetabolomicsstatisticalmethodclassificationimputation-methodsmachine-learningmissing-data
Last updated 23 days agofrom:300bbe05ae. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | NOTE | Oct 30 2024 |
R-4.5-linux | NOTE | Oct 30 2024 |
R-4.4-win | NOTE | Oct 30 2024 |
R-4.4-mac | NOTE | Oct 31 2024 |
R-4.3-win | NOTE | Oct 31 2024 |
R-4.3-mac | NOTE | Oct 31 2024 |
Exports:MAI
Dependencies:abindaskpassbackportsbase64encBiobaseBiocGenericsbitbit64blobbroombslibcachemcallrcaretcellrangerclassclicliprclockcodetoolscolorspaceconflictedcpp11crayoncurldata.tableDBIdbplyrDelayedArraydiagramdigestdoParalleldoRNGdplyrdtplyre1071evaluatefansifarverfastmapfontawesomeforcatsforeachfsfuturefuture.applygarglegenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2globalsgluegoogledrivegooglesheets4gowergtablehardhathavenhighrhmshtmltoolshttridsipredIRangesisobanditeratorsitertoolsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemissForestModelMetricsmodelrmunsellnlmennetnumDerivopensslparallellypcaMethodspillarpkgconfigplyrprettyunitspROCprocessxprodlimprogressprogressrproxypspurrrR6raggrandomForestrappdirsRColorBrewerRcppreadrreadxlrecipesrematchrematch2reprexreshape2rlangrmarkdownrngtoolsrpartrstudioapirvestS4ArraysS4VectorssassscalesselectrshapeSparseArraySQUAREMstringistringrSummarizedExperimentsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextzdbUCSC.utilsutf8uuidvctrsviridisLitevroomwithrxfunxml2XVectoryamlzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Mechanism-Aware Imputation | MAI |
Example data set containing missing values | untargeted_LCMS_data |