Package: IsoBayes 1.5.0

Simone Tiberi

IsoBayes: IsoBayes: Single Isoform protein inference Method via Bayesian Analyses

IsoBayes is a Bayesian method to perform inference on single protein isoforms. Our approach infers the presence/absence of protein isoforms, and also estimates their abundance; additionally, it provides a measure of the uncertainty of these estimates, via: i) the posterior probability that a protein isoform is present in the sample; ii) a posterior credible interval of its abundance. IsoBayes inputs liquid cromatography mass spectrometry (MS) data, and can work with both PSM counts, and intensities. When available, trascript isoform abundances (i.e., TPMs) are also incorporated: TPMs are used to formulate an informative prior for the respective protein isoform relative abundance. We further identify isoforms where the relative abundance of proteins and transcripts significantly differ. We use a two-layer latent variable approach to model two sources of uncertainty typical of MS data: i) peptides may be erroneously detected (even when absent); ii) many peptides are compatible with multiple protein isoforms. In the first layer, we sample the presence/absence of each peptide based on its estimated probability of being mistakenly detected, also known as PEP (i.e., posterior error probability). In the second layer, for peptides that were estimated as being present, we allocate their abundance across the protein isoforms they map to. These two steps allow us to recover the presence and abundance of each protein isoform.

Authors:Jordy Bollon [aut], Simone Tiberi [aut, cre]

IsoBayes_1.5.0.tar.gz
IsoBayes_1.5.0.zip(r-4.5)IsoBayes_1.5.0.zip(r-4.4)IsoBayes_1.5.0.zip(r-4.3)
IsoBayes_1.5.0.tgz(r-4.4-x86_64)IsoBayes_1.5.0.tgz(r-4.4-arm64)IsoBayes_1.5.0.tgz(r-4.3-x86_64)IsoBayes_1.5.0.tgz(r-4.3-arm64)
IsoBayes_1.5.0.tar.gz(r-4.5-noble)IsoBayes_1.5.0.tar.gz(r-4.4-noble)
IsoBayes_1.5.0.tgz(r-4.4-emscripten)IsoBayes_1.5.0.tgz(r-4.3-emscripten)
IsoBayes.pdf |IsoBayes.html
IsoBayes/json (API)
NEWS

# Install 'IsoBayes' in R:
install.packages('IsoBayes', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/simonetiberi/isobayes/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On BioConductor:IsoBayes-1.5.0(bioc 3.21)IsoBayes-1.4.0(bioc 3.20)

statisticalmethodbayesianproteomicsmassspectrometryalternativesplicingsequencingrnaseqgeneexpressiongeneticsvisualizationsoftwarecpp

5.39 score 7 stars 10 scripts 170 downloads 5 exports 64 dependencies

Last updated 3 months agofrom:9b32421497. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-win-x86_64NOTEDec 31 2024
R-4.5-linux-x86_64NOTEDec 29 2024
R-4.4-win-x86_64NOTEDec 31 2024
R-4.4-mac-x86_64NOTEDec 29 2024
R-4.4-mac-aarch64NOTEDec 29 2024
R-4.3-win-x86_64NOTEDec 31 2024
R-4.3-mac-x86_64NOTEDec 29 2024
R-4.3-mac-aarch64NOTEDec 29 2024

Exports:generate_SEinferenceinput_dataplot_relative_abundancesplot_traceplot

Dependencies:abindaskpassBiobaseBiocGenericsclicodetoolscolorspacecrayoncurldata.tableDelayedArraydigestdoParalleldoRNGfansifarverforeachgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtableHDIntervalhttrIRangesisobanditeratorsjsonlitelabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemunsellnlmeopensslpillarpkgconfigR6RColorBrewerRcppRcppArmadillorlangrngtoolsS4ArraysS4VectorsscalesSparseArraySummarizedExperimentsystibbleUCSC.utilsutf8vctrsviridisLitewithrXVector

IsoBayes

Rendered fromIsoBayes.Rmdusingknitr::rmarkdownon Dec 29 2024.

Last update: 2024-07-31
Started: 2023-07-19