Package: ILoReg 1.17.0

Johannes Smolander

ILoReg: ILoReg: a tool for high-resolution cell population identification from scRNA-Seq data

ILoReg is a tool for identification of cell populations from scRNA-seq data. In particular, ILoReg is useful for finding cell populations with subtle transcriptomic differences. The method utilizes a self-supervised learning method, called Iteratitive Clustering Projection (ICP), to find cluster probabilities, which are used in noise reduction prior to PCA and the subsequent hierarchical clustering and t-SNE steps. Additionally, functions for differential expression analysis to find gene markers for the populations and gene expression visualization are provided.

Authors:Johannes Smolander [cre, aut], Sini Junttila [aut], Mikko S Venäläinen [aut], Laura L Elo [aut]

ILoReg_1.17.0.tar.gz
ILoReg_1.17.0.zip(r-4.5)ILoReg_1.17.0.zip(r-4.4)ILoReg_1.17.0.zip(r-4.3)
ILoReg_1.17.0.tgz(r-4.4-any)ILoReg_1.17.0.tgz(r-4.3-any)
ILoReg_1.17.0.tar.gz(r-4.5-noble)ILoReg_1.17.0.tar.gz(r-4.4-noble)
ILoReg_1.17.0.tgz(r-4.4-emscripten)ILoReg_1.17.0.tgz(r-4.3-emscripten)
ILoReg.pdf |ILoReg.html
ILoReg/json (API)
NEWS

# Install 'ILoReg' in R:
install.packages('ILoReg', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/elolab/iloreg/issues

Datasets:
  • pbmc3k_500 - A toy dataset with 500 cells downsampled from the pbmc3k dataset.

On BioConductor:ILoReg-1.17.0(bioc 3.21)ILoReg-1.16.0(bioc 3.20)

singlecellsoftwareclusteringdimensionreductionrnaseqvisualizationtranscriptomicsdatarepresentationdifferentialexpressiontranscriptiongeneexpression

4.88 score 5 stars 2 scripts 130 downloads 1 mentions 21 exports 121 dependencies

Last updated 2 months agofrom:8522e63b5b. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 19 2024
R-4.5-winWARNINGDec 19 2024
R-4.5-linuxWARNINGDec 19 2024
R-4.4-winWARNINGDec 19 2024
R-4.4-macWARNINGDec 19 2024
R-4.3-winWARNINGDec 19 2024
R-4.3-macWARNINGDec 19 2024

Exports:AnnotationScatterPlotCalcSilhInfoClusteringScatterPlotFindAllGeneMarkersFindGeneMarkersGeneHeatmapGeneScatterPlotHierarchicalClusteringMergeClustersPCAElbowPlotPrepareILoRegRenameAllClustersRenameClusterRunParallelICPRunPCARunTSNERunUMAPSelectKClustersSelectTopGenesSilhouetteCurveVlnPlot

Dependencies:abindaricodeaskpassBiobaseBiocGenericsbitbit64bootcellrangerclassclicliprclustercodetoolscolorspacecowplotcpp11crayoncurldata.tableDelayedArraydendextendDescToolsdigestdoRNGdoSNOWdplyre1071ExactexpmfansifarverfastclusterforcatsforeachgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gldgluegridExtragtablehavenherehmshttrIRangesisobanditeratorsjsonlitelabelinglatticeLiblineaRlifecyclelmommagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemunsellmvtnormnlmeopensslparallelDistpheatmappillarpkgconfigplyrpngprettyunitsprogressproxyR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRcppTOMLreadrreadxlrematchreshape2reticulaterlangrngtoolsrootSolverprojrootRSpectrarstudioapiRtsneS4ArraysS4VectorsscalesSingleCellExperimentsnowSparseArraySparseMstringistringrSummarizedExperimentsystibbletidyselecttzdbUCSC.utilsumaputf8vctrsviridisviridisLitevroomwithrXVectorzlibbioc

ILoReg package manual

Rendered fromILoReg.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2022-03-08
Started: 2019-10-24

Readme and manuals

Help Manual

Help pageTopics
Visualiation of a custom annotation over nonlinear dimensionality reductionAnnotationScatterPlot AnnotationScatterPlot,SingleCellExperiment-method AnnotationScatterPlot.SingleCellExperiment
Estimating optimal K using silhouetteCalcSilhInfo CalcSilhInfo,SingleCellExperiment-method CalcSilhInfo.SingleCellExperiment
Visualize the clustering over nonliner dimensionality reductionClusteringScatterPlot ClusteringScatterPlot,SingleCellExperiment-method ClusteringScatterPlot.SingleCellExperiment
Down- and oversample dataDownOverSampling
identification of gene markers for all clustersFindAllGeneMarkers FindAllGeneMarkers,SingleCellExperiment-method FindAllGeneMarkers.SingleCellExperiment
Identification of gene markers for a cluster or two arbitrary combinations of clustersFindGeneMarkers FindGeneMarkers,SingleCellExperiment-method FindGeneMarkers.SingleCellExperiment
Heatmap visualization of the gene markers identified by FindAllGeneMarkersGeneHeatmap GeneHeatmap,SingleCellExperiment-method GeneHeatmap.SingleCellExperiment
Visualize gene expression over nonlinear dimensionality reductionGeneScatterPlot GeneScatterPlot,SingleCellExperiment-method GeneScatterPlot.SingleCellExperiment
Hierarchical clustering using the Ward's methodHierarchicalClustering HierarchicalClustering,SingleCellExperiment-method HierarchicalClustering.SingleCellExperiment
Clustering projection using logistic regression from the LiblineaR R packageLogisticRegression
Merge clustersMergeClusters MergeClusters,SingleCellExperiment-method MergeClusters.SingleCellExperiment
A toy dataset with 500 cells downsampled from the pbmc3k dataset.pbmc3k_500
Elbow plot of the standard deviations of the principal componentsPCAElbowPlot PCAElbowPlot,SingleCellExperiment-method PCAElbowPlot.SingleCellExperiment
Prepare 'SingleCellExperiment' object for 'ILoReg' analysisPrepareILoReg PrepareILoReg,SingleCellExperiment-method PrepareILoReg.SingleCellExperiment
Renaming all clusters at onceRenameAllClusters RenameAllClusters,SingleCellExperiment-method RenameAllClusters.SingleCellExperiment
Renaming one clusterRenameCluster RenameCluster,SingleCellExperiment-method RenameCluster.SingleCellExperiment
Iterative Clustering Projection (ICP) clusteringRunICP
Run ICP runs parallerlyRunParallelICP RunParallelICP,SingleCellExperiment-method RunParallelICP.SingleCellExperiment
PCA transformation of the joint probability matrixRunPCA RunPCA,SingleCellExperiment-method RunPCA.SingleCellExperiment
Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding (t-SNE)RunTSNE RunTSNE,SingleCellExperiment-method RunTSNE.SingleCellExperiment
Uniform Manifold Approximation and Projection (UMAP)RunUMAP RunUMAP,SingleCellExperiment-method RunUMAP.SingleCellExperiment
Selecting K clusters from hierarchical clusteringSelectKClusters SelectKClusters,SingleCellExperiment-method SelectKClusters.SingleCellExperiment
Select top or bottom N genes based on a selection criterionSelectTopGenes
Silhouette curveSilhouetteCurve SilhouetteCurve,SingleCellExperiment-method SilhouetteCurve.SingleCellExperiment
Gene expression visualization using violin plotsVlnPlot VlnPlot,SingleCellExperiment-method VlnPlot.SingleCellExperiment