Package: HPiP 1.13.0

Matineh Rahmatbakhsh

HPiP: Host-Pathogen Interaction Prediction

HPiP (Host-Pathogen Interaction Prediction) uses an ensemble learning algorithm for prediction of host-pathogen protein-protein interactions (HP-PPIs) using structural and physicochemical descriptors computed from amino acid-composition of host and pathogen proteins.The proposed package can effectively address data shortages and data unavailability for HP-PPI network reconstructions. Moreover, establishing computational frameworks in that regard will reveal mechanistic insights into infectious diseases and suggest potential HP-PPI targets, thus narrowing down the range of possible candidates for subsequent wet-lab experimental validations.

Authors:Matineh Rahmatbakhsh [aut, trl, cre], Mohan Babu [led]

HPiP_1.13.0.tar.gz
HPiP_1.13.0.zip(r-4.5)HPiP_1.13.0.zip(r-4.4)HPiP_1.13.0.zip(r-4.3)
HPiP_1.13.0.tgz(r-4.4-any)HPiP_1.13.0.tgz(r-4.3-any)
HPiP_1.13.0.tar.gz(r-4.5-noble)HPiP_1.13.0.tar.gz(r-4.4-noble)
HPiP_1.13.0.tgz(r-4.4-emscripten)HPiP_1.13.0.tgz(r-4.3-emscripten)
HPiP.pdf |HPiP.html
HPiP/json (API)
NEWS

# Install 'HPiP' in R:
install.packages('HPiP', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mrbakhsh/hpip/issues

Datasets:

On BioConductor:HPiP-1.13.0(bioc 3.21)HPiP-1.12.0(bioc 3.20)

proteomicssystemsbiologynetworkinferencestructuralpredictiongenepredictionnetwork

4.95 score 3 stars 6 scripts 130 downloads 30 exports 97 dependencies

Last updated 3 months agofrom:65e718fcde. Checks:1 OK, 3 NOTE, 1 ERROR, 2 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-winERRORDec 29 2024
R-4.5-linuxNOTEDec 29 2024
R-4.4-winWARNINGDec 29 2024
R-4.4-macNOTEDec 29 2024
R-4.3-winWARNINGDec 29 2024
R-4.3-macNOTEDec 29 2024

Exports:calculateAACcalculateAutocorcalculateBEcalculateCTDCcalculateCTDDcalculateCTDTcalculateCTriadcalculateDCcalculateFcalculateKSAAPcalculateQD_SmcalculateTCcalculateTC_Smcorr_plotenrichfind_cpxenrichfind_hpenrichfindPenrichplotfilter_missing_valuesFreqInteractorsFSmethodget_negativePPIget_positivePPIgetFASTAgetHPIimpute_missing_dataplotPPIpred_ensembelrun_clusteringvar_imp

Dependencies:askpassbitbit64caretclassclicliprclockcodetoolscolorspacecorrplotcpp11crayoncurldata.tablediagramdigestdplyre1071expmfansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhathmshttrigraphipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixMCLmgcvmimeModelMetricsmunsellnlmennetnumDerivopensslparallellypillarpkgconfigplyrprettyunitspROCprodlimprogressprogressrprotrproxyPRROCpurrrR6RColorBrewerRcppreadrrecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivalsystibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitevroomwithr

Introduction to HPiP

Rendered fromHPiP_tutorial.Rmdusingknitr::rmarkdownon Dec 29 2024.

Last update: 2023-03-27
Started: 2021-09-10

Readme and manuals

Help Manual

Help pageTopics
Calculate Amino Acid Composition (AAC) DescriptorcalculateAAC
Calculate Autocorrelation DescriptorscalculateAutocor
Tranform a Seqeuence into Binary Encoding (BE)calculateBE
Calculate CTD Descriptors - Composition (C)calculateCTDC
Calculate CTD Descriptors - Distribution (D)calculateCTDD
Calculate CTD Descriptors - Transition (T)calculateCTDT
Calculate Conjoint Triad DescriptorcalculateCTriad
Calculate Dipeptide Composition (DC) DescriptorcalculateDC
Calculate F1 or F2 DescriptorscalculateF
Calculate k-spaced Amino Acid Pairs (KSAAP) DescriptorcalculateKSAAP
Calculate Quadruples Composition (QC) Descriptor from Biochemical Similarity ClassescalculateQD_Sm
Calculate Tripeptide Composition (TC) DescriptorcalculateTC
Calculate Tripeptide Composition (TC) Descriptor from Biochemical Similarity ClassescalculateTC_Sm
Plot Correlation Matrix between Input Featurescorr_plot
Enrichment Resultenrich.df
Functional Enrichment Analysis for Predicted Modulesenrichfind_cpx
Functional Enrichment Analysis of all Host Proteinsenrichfind_hp
Functional Enrichment Analysis for Pathogen Interactors in the High-Confidence Network.enrichfindP
Plot the Enrichment Reusltenrichplot
Input Data for Prediction Algorithmexample_data
Drop the Missing Values Above a Certain Thresholdfilter_missing_values
Plot the Pathogen Proteins' frequency of Interactions with Host ProteinsFreqInteractors
Feature Selection via Matrix Correlation and Recursive Feature Elimination (RFE)FSmethod
Construct Negative Reference Host-Pathogen Protein-Protein Interactions (HP-PPIs)get_negativePPI
Fetch Positive Reference Host-Pathogen Protein-Protein Interactions (HP-PPIs) from the BioGRID Databaseget_positivePPI
Fetch FASTA Sequence from the UniProt DatabasegetFASTA
Generating Host-Pathogen Protein-Protein Interaction (HP-PPI) DescriptorsgetHPI
Gold-standard Reference Set of Inter-Species PPIsGold_ReferenceSet
Host SummarizedExperiment objecthost_se
Impute missing Values per Features (i.e., Columns)impute_missing_data
Plot the Predicted PPIplotPPI
Predict Interactions via Ensemble Learning Methodpred_ensembel
Predicted HP-PPIspredicted_PPIs
Module Detectionrun_clustering
HP-PPIs with Unknown Class Labelsunlabel_data
Data.frame Containing SARS-CoV-2 FASTA SequencesUP000464024_df
Variable Importance Plotvar_imp
Viral SummarizedExperiment objectviral_se