Package: GmicR 1.21.0
GmicR: Combines WGCNA and xCell readouts with bayesian network learrning to generate a Gene-Module Immune-Cell network (GMIC)
This package uses bayesian network learning to detect relationships between Gene Modules detected by WGCNA and immune cell signatures defined by xCell. It is a hypothesis generating tool.
Authors:
GmicR_1.21.0.tar.gz
GmicR_1.21.0.zip(r-4.5)GmicR_1.21.0.zip(r-4.4)
GmicR_1.21.0.tgz(r-4.4-any)
GmicR_1.21.0.tar.gz(r-4.5-noble)GmicR_1.21.0.tar.gz(r-4.4-noble)
GmicR_1.21.0.tgz(r-4.4-emscripten)
GmicR.pdf |GmicR.html✨
GmicR/json (API)
# Install 'GmicR' in R: |
install.packages('GmicR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:GmicR-1.19.0(bioc 3.20)GmicR-1.18.0(bioc 3.19)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
softwaresystemsbiologygraphandnetworknetworknetworkinferenceguiimmunooncologygeneexpressionqualitycontrolbayesianclustering
Last updated 23 days agofrom:84bfd0556b. Checks:OK: 1 WARNING: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 30 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
Exports:Auto_WGCNABatch_Netbn_tabu_genData_PrepGmic_vizGO_Module_NameRGSEAGO_BuilderInverseARCsQuery_PrepxCell_loader
Dependencies:annotateAnnotationDbiAnnotationForgeapeaskpassbackportsbase64encBHBiobaseBiocGenericsBiostringsbitbit64bitopsblobbnlearnbroombslibcachemCategorycheckmatecliclustercodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDBIdigestdoParalleldplyrDTdynamicTreeCutevaluatefansifarverfastclusterfastmapfontawesomeforeachforeignFormulafsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataggplot2glueGO.dbGOstatsgRaingraphgRbasegridExtraGSEABasegtablehighrHmischtmlTablehtmltoolshtmlwidgetshttpuvhttrigraphimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmennetopensslorg.Hs.eg.dborg.Mm.eg.dbpillarpkgconfigplogrplyrpngpreprocessCorepromisespurrrR6rappdirsRBGLRColorBrewerRcppRcppArmadilloRcppEigenRCurlreshape2RgraphvizrlangrmarkdownrpartRSQLiterstudioapiS4VectorssassscalesshinysourcetoolsstringistringrsurvivalsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsviridisviridisLiteWGCNAwithrxfunXMLxtableXVectoryamlzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Carries out WGCNA with default settings or custom settings | Auto_WGCNA |
Generates a subgraph from query nodes | Batch_Net |
Uses tabu search algorithm to learn the structure of discretized data. | bn_tabu_gen |
Discretizes biological assay data in preparation for bayensian network learning | Data_Prep |
Visualized network | Gmic_viz |
GO enrichment for module names | GO_Module_NameR |
GO enrichment for module names | GSEAGO_Builder |
Identifies arcs between nodes with inverse relationships | InverseARCs |
Query Prep | Query_Prep |
Scales and centers data by sample/row in preparation for discretization | xCell_loader |