Package: GRENITS 1.59.0
GRENITS: Gene Regulatory Network Inference Using Time Series
The package offers four network inference statistical models using Dynamic Bayesian Networks and Gibbs Variable Selection: a linear interaction model, two linear interaction models with added experimental noise (Gaussian and Student distributed) for the case where replicates are available and a non-linear interaction model.
Authors:
GRENITS_1.59.0.tar.gz
GRENITS_1.59.0.zip(r-4.5)GRENITS_1.59.0.zip(r-4.4)GRENITS_1.59.0.zip(r-4.3)
GRENITS_1.59.0.tgz(r-4.4-x86_64)GRENITS_1.59.0.tgz(r-4.4-arm64)GRENITS_1.59.0.tgz(r-4.3-x86_64)GRENITS_1.59.0.tgz(r-4.3-arm64)
GRENITS_1.59.0.tar.gz(r-4.5-noble)GRENITS_1.59.0.tar.gz(r-4.4-noble)
GRENITS_1.59.0.tgz(r-4.4-emscripten)GRENITS_1.59.0.tgz(r-4.3-emscripten)
GRENITS.pdf |GRENITS.html✨
GRENITS/json (API)
NEWS
# Install 'GRENITS' in R: |
install.packages('GRENITS', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- Athaliana_ODE - Gene expression time series generated with ODE model
- Athaliana_ODE_4NoiseReps - Gene expression time series generated with ODE model with added noise
On BioConductor:GRENITS-1.59.0(bioc 3.21)GRENITS-1.58.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
networkinferencegeneregulationtimecoursegraphandnetworkgeneexpressionnetworkbayesianopenblascpp
Last updated 2 months agofrom:021f1b5b02. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 21 2024 |
R-4.5-win-x86_64 | NOTE | Dec 21 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 21 2024 |
R-4.4-win-x86_64 | NOTE | Dec 21 2024 |
R-4.4-mac-x86_64 | NOTE | Dec 21 2024 |
R-4.4-mac-aarch64 | NOTE | Dec 21 2024 |
R-4.3-win-x86_64 | NOTE | Dec 21 2024 |
R-4.3-mac-x86_64 | NOTE | Dec 21 2024 |
R-4.3-mac-aarch64 | NOTE | Dec 21 2024 |
Exports:analyse.outputLinearNetmcmc.defaultParams_gaussmcmc.defaultParams_Linearmcmc.defaultParams_nonLinearmcmc.defaultParams_studentNonLinearNetplotPriorsread.chainReplicatesNet_gaussReplicatesNet_student
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshape2rlangscalesstringistringrtibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Analysis Plots | analyse.output |
Gene expression time series generated with ODE model | Athaliana_ODE |
Gene expression time series generated with ODE model with added noise | Athaliana_ODE_4NoiseReps |
Dynamic Bayesian Network Inference Using Linear Interactions | LinearNet |
Default Parameters for Linear Model with Gaussian distributed replicates | mcmc.defaultParams_gauss |
Default Parameters for Linear Model | mcmc.defaultParams_Linear |
Default Parameters for non-Linear Model | mcmc.defaultParams_nonLinear |
Default Parameters for Linear Model with Student distributed replicates | mcmc.defaultParams_student |
Dynamic Bayesian Network Inference Using Non-Linear Interactions | NonLinearNet |
Plot prior using parameter vector | plotPriors |
Read MCMC Chains | read.chain |
Dynamic Bayesian Network Inference Using Linear Interactions and Gaussian Experimental Noise | ReplicatesNet_gauss |
Dynamic Bayesian Network Inference Using Linear Interactions and Student Experimental Noise | ReplicatesNet_student |