Package: EBarrays 2.71.0

Ming Yuan

EBarrays: Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification

EBarrays provides tools for the analysis of replicated/unreplicated microarray data.

Authors:Ming Yuan, Michael Newton, Deepayan Sarkar and Christina Kendziorski

EBarrays_2.71.0.tar.gz
EBarrays_2.71.0.zip(r-4.5)EBarrays_2.71.0.zip(r-4.4)EBarrays_2.71.0.zip(r-4.3)
EBarrays_2.71.0.tgz(r-4.4-x86_64)EBarrays_2.71.0.tgz(r-4.4-arm64)EBarrays_2.71.0.tgz(r-4.3-x86_64)EBarrays_2.71.0.tgz(r-4.3-arm64)
EBarrays_2.71.0.tar.gz(r-4.5-noble)EBarrays_2.71.0.tar.gz(r-4.4-noble)
EBarrays_2.71.0.tgz(r-4.4-emscripten)EBarrays_2.71.0.tgz(r-4.3-emscripten)
EBarrays.pdf |EBarrays.html
EBarrays/json (API)

# Install 'EBarrays' in R:
install.packages('EBarrays', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • gould - A dataset of class matrix

On BioConductor:EBarrays-2.69.0(bioc 3.20)EBarrays-2.68.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

clusteringdifferentialexpression

4.56 score 6 packages 5 scripts 532 downloads 19 exports 4 dependencies

Last updated 20 days agofrom:3c3b71c8b2. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-win-x86_64NOTEOct 30 2024
R-4.5-linux-x86_64NOTEOct 30 2024
R-4.4-win-x86_64NOTEOct 30 2024
R-4.4-mac-x86_64NOTEOct 30 2024
R-4.4-mac-aarch64NOTEOct 30 2024
R-4.3-win-x86_64NOTEOct 30 2024
R-4.3-mac-x86_64NOTEOct 30 2024
R-4.3-mac-aarch64NOTEOct 30 2024

Exports:checkCCVcheckModelcheckVarsMarcheckVarsQQcrit.funeb.createFamilyGGeb.createFamilyLNNeb.createFamilyLNNMVebPatternsemfitemfit0emfit1emfit2emfit3emfitmvplot.ebarraysEMfitplotClusterplotMarginalpostprob

Dependencies:BiobaseBiocGenericsclusterlattice

Introduction to EBarrays

Rendered fromvignette.Rnwusingutils::Sweaveon Oct 30 2024.

Last update: 2013-11-01
Started: 2013-11-01

Readme and manuals

Help Manual

Help pageTopics
Find posterior probability threshold to control FDRcrit.fun
Class of Families to be used in the EBarrays packagecoerce,character,ebarraysFamily-method eb.createFamilyGG eb.createFamilyLNN eb.createFamilyLNNMV ebarraysFamily-class show,ebarraysFamily-method
Various plotting routines in the EBarrays packagecheckCCV checkModel checkVarsMar checkVarsQQ ebplots plot.ebarraysEMfit plotCluster plotMarginal
Implements EM algorithm for gene expression mixture modelebarraysEMfit-class emfit emfit,ExpressionSet,character,ebarraysPatterns-method emfit,ExpressionSet,ebarraysFamily,ebarraysPatterns-method emfit,matrix,character,ebarraysPatterns-method emfit,matrix,ebarraysFamily,ebarraysPatterns-method show,ebarraysEMfit-method
A dataset of class matrixgould
Calculates posterior probabilities for expression patternsebarraysPostProb-class postprob postprob,ebarraysEMfit,ExpressionSet-method postprob,ebarraysEMfit,matrix-method show,ebarraysPostProb-method
Utility functions for the EBarrays packageebarraysPatterns-class ebPatterns show,ebarraysPatterns-method utilities